|
| 1 | +from copy import deepcopy |
| 2 | +from itertools import product |
| 3 | +import warnings |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +from joblib import Parallel, delayed |
| 7 | +from sklearn.covariance import LedoitWolf |
| 8 | +from sklearn.utils.validation import check_memory |
| 9 | +from tqdm import tqdm |
| 10 | + |
| 11 | +from hidimstat._utils.docstring import _aggregate_docstring |
| 12 | +from hidimstat.statistical_tools.gaussian_distribution import GaussianDistribution |
| 13 | +from hidimstat.statistical_tools.lasso_test import lasso_statistic |
| 14 | +from hidimstat.base_variable_importance import BaseVariableImportance |
| 15 | + |
| 16 | + |
| 17 | +class CRT(BaseVariableImportance): |
| 18 | + """ |
| 19 | + Implements conditional randomization test (CRT). |
| 20 | + The Conditional Randomization Test :footcite:t:`candes2018panning` is a method |
| 21 | + for statistical variable importance testing (see algorithm 2). |
| 22 | + Parameters |
| 23 | + ---------- |
| 24 | + generator : object, default=GaussianGenerator(cov_estimator=LedoitWolf(assume_centered=True)) |
| 25 | + Generator object for simulating null distributions |
| 26 | + statistical_test : callable, default=lasso_statistic |
| 27 | + Function that computes test statistic |
| 28 | + n_permutation : int, default=10 |
| 29 | + Number of permutations for the test |
| 30 | + n_jobs : int, default=1 |
| 31 | + Number of parallel jobs |
| 32 | + memory : str or object, default=None |
| 33 | + Used for caching |
| 34 | + joblib_verbose : int, default=0 |
| 35 | + Verbosity level for parallel jobs |
| 36 | + Attributes |
| 37 | + ---------- |
| 38 | + importances_ : ndarray of shape (n_features,) |
| 39 | + Feature importance scores |
| 40 | + pvalues_ : ndarray of shape (n_features,) |
| 41 | + P-values for each feature |
| 42 | + Notes |
| 43 | + ----- |
| 44 | + The CRT tests feature importance by comparing observed test statistics against |
| 45 | + a conditional null distribution generated through simulation. |
| 46 | + See Also |
| 47 | + -------- |
| 48 | + GaussianGenerator : Generator for Gaussian null distributions |
| 49 | + lasso_statistic : Default test statistic using Lasso coefficients |
| 50 | + References |
| 51 | + ---------- |
| 52 | + .. footbibliography:: |
| 53 | + """ |
| 54 | + |
| 55 | + def __init__( |
| 56 | + self, |
| 57 | + generator=GaussianDistribution(cov_estimator=LedoitWolf(assume_centered=True)), |
| 58 | + statistical_test=lasso_statistic, |
| 59 | + n_repeat=10, |
| 60 | + n_jobs=1, |
| 61 | + memory=None, |
| 62 | + joblib_verbose=0, |
| 63 | + ): |
| 64 | + self.generator = generator |
| 65 | + assert n_repeat > 0, "n_samplings must be positive" |
| 66 | + self.n_repeat = n_repeat |
| 67 | + self.n_jobs = n_jobs |
| 68 | + self.memory = check_memory(memory) |
| 69 | + self.joblib_verbose = joblib_verbose |
| 70 | + self.statistical_test = statistical_test |
| 71 | + |
| 72 | + def fit(self, X, y=None): |
| 73 | + """ |
| 74 | + Fit the CRT model by training the generator. |
| 75 | + Parameters |
| 76 | + ---------- |
| 77 | + X : array-like of shape (n_samples, n_features) |
| 78 | + Training data matrix where n_samples is the number of samples and |
| 79 | + n_features is the number of features. |
| 80 | + y : array-like of shape (n_samples,), default=None |
| 81 | + Target values. Not used in this method. |
| 82 | + Returns |
| 83 | + ------- |
| 84 | + self : object |
| 85 | + Returns the instance itself. |
| 86 | + Notes |
| 87 | + ----- |
| 88 | + The fit method only trains the generator component. The target values y |
| 89 | + are not used in this step. |
| 90 | + """ |
| 91 | + if y is not None: |
| 92 | + warnings.warn("y won't be used") |
| 93 | + |
| 94 | + self.generator.fit(X) |
| 95 | + return self |
| 96 | + |
| 97 | + def _check_fit(self): |
| 98 | + try: |
| 99 | + self.generator._check_fit() |
| 100 | + except ValueError as exc: |
| 101 | + raise ValueError( |
| 102 | + "The CRT requires to be fitted before computing importance" |
| 103 | + ) from exc |
| 104 | + |
| 105 | + def importance(self, X, y): |
| 106 | + """ |
| 107 | + Calculate p-values and identify significant features using the CRT test statistics. |
| 108 | + This function processes the results from Conditional Randomization Test (CRT) to identify |
| 109 | + statistically significant features. It computes p-values by comparing a reference test |
| 110 | + statistic to test statistics from permuted data. |
| 111 | + X : array-like of shape (n_samples, n_features) |
| 112 | + y : array-like of shape (n_samples,) |
| 113 | + Array of importance scores (p-values) for each feature. Lower p-values indicate |
| 114 | + higher importance. Values range from 0 to 1. |
| 115 | + Notes |
| 116 | + ----- |
| 117 | + The p-values are calculated using the formula: |
| 118 | + (1 + #(T_perm >= T_obs)) / (n_permutations + 1) |
| 119 | + where T_perm are the test statistics from permuted data and T_obs is the |
| 120 | + reference test statistic. |
| 121 | + See Also |
| 122 | + -------- |
| 123 | + statistical_test : Method that computes the test statistic used in this function. |
| 124 | + """ |
| 125 | + self._check_fit() |
| 126 | + reference_value = self.statistical_test(X, y) |
| 127 | + |
| 128 | + parallel = Parallel(self.n_jobs, verbose=self.joblib_verbose) |
| 129 | + X_samples = [] |
| 130 | + for i in range(self.n_repeat): |
| 131 | + X_samples.append(self.generator.sample()) |
| 132 | + |
| 133 | + self.test_scores_ = np.array( |
| 134 | + parallel( |
| 135 | + delayed(joblib_statitistic_test)( |
| 136 | + index, X, X_sample, y, self.statistical_test |
| 137 | + ) |
| 138 | + for X_sample, index in tqdm(product(X_samples, range(X.shape[1]))) |
| 139 | + ) |
| 140 | + ) |
| 141 | + self.test_scores_ = reference_value - np.array(self.test_scores_).reshape( |
| 142 | + self.n_repeat, -1 |
| 143 | + ) |
| 144 | + |
| 145 | + self.importances_ = np.mean(np.abs(self.test_scores_), axis=0) |
| 146 | + # see equation of p-value in algorithm 2 |
| 147 | + self.pvalues_ = ( |
| 148 | + 1 |
| 149 | + + np.sum( |
| 150 | + self.test_scores_ >= 0, |
| 151 | + axis=0, |
| 152 | + ) |
| 153 | + ) / (self.n_repeat + 1) |
| 154 | + return self.importances_ |
| 155 | + |
| 156 | + def fit_importance(self, X, y, cv=None): |
| 157 | + """ |
| 158 | + Fits the model to the data and computes feature importance. |
| 159 | + Parameters |
| 160 | + ---------- |
| 161 | + X : array-like of shape (n_samples, n_features) |
| 162 | + The input data matrix where n_samples is the number of samples and |
| 163 | + n_features is the number of features. |
| 164 | + y : array-like of shape (n_samples,) |
| 165 | + The target values. |
| 166 | + cv : None or cross-validation generator, default=None |
| 167 | + Cross-validation parameter. Not used in this method. |
| 168 | + A warning will be issued if provided. |
| 169 | + Returns |
| 170 | + ------- |
| 171 | + importances_ : ndarray of shape (n_features,) |
| 172 | + Feature importance scores (p-values) for each feature. |
| 173 | + Lower values indicate higher importance. Values range from 0 to 1. |
| 174 | + Notes |
| 175 | + ----- |
| 176 | + This method combines the fit and importance computation steps. |
| 177 | + It first fits the generator to X and then computes importance scores |
| 178 | + by comparing observed test statistics against permuted ones. |
| 179 | + See Also |
| 180 | + -------- |
| 181 | + fit : Method for fitting the generator only |
| 182 | + importance : Method for computing importance scores only |
| 183 | + """ |
| 184 | + if cv is not None: |
| 185 | + warnings.warn("cv won't be used") |
| 186 | + |
| 187 | + self.fit(X) |
| 188 | + return self.importance(X, y) |
| 189 | + |
| 190 | + |
| 191 | +def joblib_statitistic_test(index, X, X_sample, y, statistic_test): |
| 192 | + """Compute test statistic for a single feature with permuted data. |
| 193 | + Parameters |
| 194 | + ---------- |
| 195 | + index : int |
| 196 | + Index of the feature to test |
| 197 | + X : array-like of shape (n_samples, n_features) |
| 198 | + Original input data matrix |
| 199 | + X_sample : array-like of shape (n_samples, n_features) |
| 200 | + Permuted data matrix |
| 201 | + y : array-like of shape (n_samples,) |
| 202 | + Target values |
| 203 | + statistic_test : callable |
| 204 | + Function that computes the test statistic |
| 205 | + Returns |
| 206 | + ------- |
| 207 | + float |
| 208 | + Test statistic value for the specified feature |
| 209 | + """ |
| 210 | + X_tmp = deepcopy(X) |
| 211 | + X_tmp[:, index] = deepcopy(X_sample[:, index]) |
| 212 | + return statistic_test(X_tmp, y)[index] |
| 213 | + |
| 214 | + |
| 215 | +def crt( |
| 216 | + X, |
| 217 | + y, |
| 218 | + generator=GaussianDistribution(cov_estimator=LedoitWolf(assume_centered=True)), |
| 219 | + statistical_test=lasso_statistic, |
| 220 | + n_repeat=10, |
| 221 | + n_jobs=1, |
| 222 | + memory=None, |
| 223 | + joblib_verbose=0, |
| 224 | +): |
| 225 | + crt = CRT( |
| 226 | + generator=generator, |
| 227 | + statistical_test=statistical_test, |
| 228 | + n_repeat=n_repeat, |
| 229 | + n_jobs=n_jobs, |
| 230 | + memory=memory, |
| 231 | + joblib_verbose=joblib_verbose, |
| 232 | + ) |
| 233 | + return crt.fit_importance(X, y) |
| 234 | + |
| 235 | + |
| 236 | +# use the docstring of the class for the function |
| 237 | +crt.__doc__ = _aggregate_docstring( |
| 238 | + [ |
| 239 | + CRT.__doc__, |
| 240 | + CRT.__init__.__doc__, |
| 241 | + CRT.fit_importance.__doc__, |
| 242 | + CRT.selection.__doc__, |
| 243 | + ], |
| 244 | + """ |
| 245 | + Returns |
| 246 | + ------- |
| 247 | + selection: binary array-like of shape (n_features) |
| 248 | + Binary array of the seleted features |
| 249 | + importance : array-like of shape (n_features) |
| 250 | + The computed feature importance scores. |
| 251 | + pvalues : array-like of shape (n_features) |
| 252 | + The computed significant of feature for the prediction. |
| 253 | + """, |
| 254 | +) |
0 commit comments