@@ -59,7 +59,7 @@ class Agent:
5959 >>> agent = agents.create(
6060 'my_agent',
6161 model={
62- 'name ': 'gpt-3.5-turbo',
62+ 'model_name ': 'gpt-3.5-turbo',
6363 'provider': 'openai',
6464 'api_key': 'your_openai_api_key_here'
6565 },
@@ -303,23 +303,16 @@ def completion_stream_v2(self, name, messages: List[dict]) -> Iterable[object]:
303303 return self .api .agent_completion_stream_v2 (self .project .name , name , messages )
304304
305305 def _create_default_knowledge_base (self , agent : Agent , name : str ) -> KnowledgeBase :
306- # Make sure default ML engine for embeddings exists.
307306 try :
308- _ = self .ml_engines .get ('langchain_embedding' )
309- except AttributeError :
310- _ = self .ml_engines .create ('langchain_embedding' , 'langchain_embedding' )
311- # Include API keys in embeddings.
312- if agent .provider == "mindsdb" :
313- agent_model = self .models .get (agent .model_name )
314- training_options = json .loads (agent_model .data .get ('training_options' , '{}' ))
315- training_options_using = training_options .get ('using' , {})
316- api_key_params = {k : v for k , v in training_options_using .items () if 'api_key' in k }
317- kb = self .knowledge_bases .create (name , params = api_key_params )
318- else :
307+ # TODO: Use the agent's model credentials?
308+ # The model used will not be an embedding model though.
319309 kb = self .knowledge_bases .create (name )
320- # Wait for underlying embedding model to finish training.
321- kb .model .wait_complete ()
322- return kb
310+ return kb
311+ except Exception as e :
312+ raise ValueError (
313+ f'Failed to automatically create knowledge base for agent { agent .name } . '
314+ "Please set your default embedding model in MindsDB settings or provide an existing knowledge base name."
315+ )
323316
324317 def add_files (self , name : str , file_paths : List [str ], description : str , knowledge_base : str = None ):
325318 """
0 commit comments