@@ -24,14 +24,21 @@ def test_create_knowledge_base(self):
2424 sql = """
2525 CREATE KNOWLEDGE_BASE my_knowledge_base
2626 USING
27- MODEL=mindsdb.my_embedding_model,
27+ EMBEDDING_MODEL={
28+ "model": "text-embedding-3-small",
29+ "api_key": "sk-1234567890",
30+ },
2831 STORAGE = my_vector_database.some_table
2932 """
3033 ast = parse_sql (sql )
3134 expected_ast = CreateKnowledgeBase (
3235 name = Identifier ("my_knowledge_base" ),
3336 if_not_exists = False ,
34- model = Identifier (parts = ["mindsdb" , "my_embedding_model" ]),
37+ embedding_model = {
38+ "model" : "text-embedding-3-small" ,
39+ "api_key" : "sk-1234567890" ,
40+ },
41+ reranking_model = None ,
3542 storage = Identifier (parts = ["my_vector_database" , "some_table" ]),
3643 from_select = None ,
3744 params = {},
@@ -42,18 +49,24 @@ def test_create_knowledge_base(self):
4249 sql = """
4350 CREATE KNOWLEDGE BASE my_knowledge_base
4451 USING
45- MODEL=mindsdb.my_embedding_model,
52+ EMBEDDING_MODEL={
53+ "model": "text-embedding-3-small",
54+ "api_key": "sk-1234567890",
55+ },
4656 STORAGE = my_vector_database.some_table
4757 """
4858 ast = parse_sql (sql )
4959 assert ast == expected_ast
5060
51- # the order of MODEL and STORAGE should not matter
61+ # the order of EMBEDDING_MODEL and STORAGE should not matter
5262 sql = """
5363 CREATE KNOWLEDGE_BASE my_knowledge_base
5464 USING
5565 STORAGE = my_vector_database.some_table,
56- MODEL = mindsdb.my_embedding_model
66+ EMBEDDING_MODEL={
67+ "model": "text-embedding-3-small",
68+ "api_key": "sk-1234567890",
69+ }
5770 """
5871 ast = parse_sql (sql )
5972 assert ast == expected_ast
@@ -67,14 +80,21 @@ def test_create_knowledge_base(self):
6780 JOIN my_embedding_model
6881 )
6982 USING
70- MODEL = mindsdb.my_embedding_model,
83+ EMBEDDING_MODEL={
84+ "model": "text-embedding-3-small",
85+ "api_key": "sk-1234567890",
86+ },
7187 STORAGE = my_vector_database.some_table
7288 """
7389 ast = parse_sql (sql )
7490 expected_ast = CreateKnowledgeBase (
7591 name = Identifier ("my_knowledge_base" ),
7692 if_not_exists = False ,
77- model = Identifier (parts = ["mindsdb" , "my_embedding_model" ]),
93+ embedding_model = {
94+ "model" : "text-embedding-3-small" ,
95+ "api_key" : "sk-1234567890" ,
96+ },
97+ reranking_model = None ,
7898 storage = Identifier (parts = ["my_vector_database" , "some_table" ]),
7999 from_select = Select (
80100 targets = [
@@ -94,7 +114,7 @@ def test_create_knowledge_base(self):
94114
95115 assert ast == expected_ast
96116
97- # create without MODEL
117+ # create without EMBEDDING_MODEL
98118 sql = """
99119 CREATE KNOWLEDGE_BASE my_knowledge_base
100120 USING
@@ -104,7 +124,8 @@ def test_create_knowledge_base(self):
104124 expected_ast = CreateKnowledgeBase (
105125 name = Identifier ("my_knowledge_base" ),
106126 if_not_exists = False ,
107- model = None ,
127+ embedding_model = None ,
128+ reranking_model = None ,
108129 storage = Identifier (parts = ["my_vector_database" , "some_table" ]),
109130 from_select = None ,
110131 params = {},
@@ -118,13 +139,20 @@ def test_create_knowledge_base(self):
118139 sql = """
119140 CREATE KNOWLEDGE_BASE my_knowledge_base
120141 USING
121- MODEL = mindsdb.my_embedding_model
142+ EMBEDDING_MODEL={
143+ "model": "text-embedding-3-small",
144+ "api_key": "sk-1234567890",
145+ }
122146 """
123147
124148 expected_ast = CreateKnowledgeBase (
125149 name = Identifier ("my_knowledge_base" ),
126150 if_not_exists = False ,
127- model = Identifier (parts = ["mindsdb" , "my_embedding_model" ]),
151+ embedding_model = {
152+ "model" : "text-embedding-3-small" ,
153+ "api_key" : "sk-1234567890" ,
154+ },
155+ reranking_model = None ,
128156 from_select = None ,
129157 params = {},
130158 )
@@ -137,14 +165,21 @@ def test_create_knowledge_base(self):
137165 sql = """
138166 CREATE KNOWLEDGE_BASE IF NOT EXISTS my_knowledge_base
139167 USING
140- MODEL = mindsdb.my_embedding_model,
168+ EMBEDDING_MODEL={
169+ "model": "text-embedding-3-small",
170+ "api_key": "sk-1234567890",
171+ },
141172 STORAGE = my_vector_database.some_table
142173 """
143174 ast = parse_sql (sql )
144175 expected_ast = CreateKnowledgeBase (
145176 name = Identifier ("my_knowledge_base" ),
146177 if_not_exists = True ,
147- model = Identifier (parts = ["mindsdb" , "my_embedding_model" ]),
178+ embedding_model = {
179+ "model" : "text-embedding-3-small" ,
180+ "api_key" : "sk-1234567890" ,
181+ },
182+ reranking_model = None ,
148183 storage = Identifier (parts = ["my_vector_database" , "some_table" ]),
149184 from_select = None ,
150185 params = {},
@@ -160,7 +195,8 @@ def test_create_knowledge_base(self):
160195 expected_ast = CreateKnowledgeBase (
161196 name = Identifier ("my_knowledge_base" ),
162197 if_not_exists = False ,
163- model = None ,
198+ embedding_model = None ,
199+ reranking_model = None ,
164200 storage = None ,
165201 from_select = None ,
166202 params = {},
@@ -171,7 +207,10 @@ def test_create_knowledge_base(self):
171207 sql = """
172208 CREATE KNOWLEDGE_BASE my_knowledge_base
173209 USING
174- MODEL = mindsdb.my_embedding_model,
210+ EMBEDDING_MODEL={
211+ "model": "text-embedding-3-small",
212+ "api_key": "sk-1234567890",
213+ },
175214 STORAGE = my_vector_database.some_table,
176215 some_param = 'some value',
177216 other_param = 'other value'
@@ -180,7 +219,11 @@ def test_create_knowledge_base(self):
180219 expected_ast = CreateKnowledgeBase (
181220 name = Identifier ("my_knowledge_base" ),
182221 if_not_exists = False ,
183- model = Identifier (parts = ["mindsdb" , "my_embedding_model" ]),
222+ embedding_model = {
223+ "model" : "text-embedding-3-small" ,
224+ "api_key" : "sk-1234567890" ,
225+ },
226+ reranking_model = None ,
184227 storage = Identifier (parts = ["my_vector_database" , "some_table" ]),
185228 from_select = None ,
186229 params = {"some_param" : "some value" , "other_param" : "other value" },
0 commit comments