Skip to content

Commit 020120f

Browse files
Bruce-pyslgao
andauthored
Fix docs (#811)
* fix mindocr static webpage * fix lint --------- Co-authored-by: slgao <[email protected]>
1 parent 55e0ee7 commit 020120f

28 files changed

+352
-305
lines changed

.github/workflows/docs.yml

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -21,6 +21,10 @@ jobs:
2121
run: |
2222
python -m pip install --upgrade pip
2323
pip install -r requirements/docs.txt
24+
- name: Make the script executable
25+
run: chmod +x docs/replace_path.sh
26+
- name: Run the scripts
27+
run: ./docs/replace_path.sh
2428
- name: Build site
2529
run: mkdocs build
2630
- name: Deploy to gh-pages

README.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -274,7 +274,7 @@ You can do MindSpore Lite inference in MindOCR using **MindOCR models** or **Thi
274274
<summary>Key Information Extraction</summary>
275275
276276
- [x] [LayoutXLM](configs/kie/vi_layoutxlm/README.md) (arXiv'2021)
277-
- [x] [LayoutLMv3](configs/kie/layoutlmv3/README.md) (arXiv'2022)
277+
- [x] [LayoutLMv3](configs/layout/layoutlmv3/README.md) (arXiv'2022)
278278
279279
</details>
280280
@@ -292,7 +292,7 @@ You can do MindSpore Lite inference in MindOCR using **MindOCR models** or **Thi
292292
293293
</details>
294294
295-
For the detailed performance of the trained models, please refer to [https://github.com/mindspore-lab/mindocr/blob/main/configs](./configs).
295+
For the detailed performance of the trained models, please refer to [configs](configs).
296296
297297
For details of MindSpore Lite inference models support, please refer to [MindOCR Models Support List](docs/en/inference/mindocr_models_list.md) and [Third-party Models Support List](docs/en/inference/thirdparty_models_list.md) (PaddleOCR etc.).
298298
@@ -306,45 +306,45 @@ MindOCR provides a [dataset conversion tool](https://github.com/mindspore-lab/mi
306306
- [Born-Digital Images](https://rrc.cvc.uab.es/?ch=1) [[download](docs/en/datasets/borndigital.md)]
307307
- [CASIA-10K](http://www.nlpr.ia.ac.cn/pal/CASIA10K.html) [[download](docs/en/datasets/casia10k.md)]
308308
- [CCPD](https://github.com/detectRecog/CCPD) [[download](docs/en/datasets/ccpd.md)]
309-
- [Chinese Text Recognition Benchmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition) [[paper](https://arxiv.org/abs/2112.15093)] [[download](docs/en/datasets/chinese_text_recognition.md)]
309+
- [Chinese Text Recognition Benchmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition) [[paper](https://arxiv.org/abs/2112.15093)] \[[download](docs/en/datasets/chinese_text_recognition.md)]
310310
- [COCO-Text](https://rrc.cvc.uab.es/?ch=5) [[download](docs/en/datasets/cocotext.md)]
311311
- [CTW](https://ctwdataset.github.io/) [[download](docs/en/datasets/ctw.md)]
312-
- [ICDAR2015](https://rrc.cvc.uab.es/?ch=4) [[paper](https://rrc.cvc.uab.es/files/short_rrc_2015.pdf)] [[download](docs/en/datasets/icdar2015.md)]
312+
- [ICDAR2015](https://rrc.cvc.uab.es/?ch=4) [[paper](https://rrc.cvc.uab.es/files/short_rrc_2015.pdf)] \[[download](docs/en/datasets/icdar2015.md)]
313313
- [ICDAR2019 ArT](https://rrc.cvc.uab.es/?ch=14) [[download](docs/en/datasets/ic19_art.md)]
314314
- [LSVT](https://rrc.cvc.uab.es/?ch=16) [[download](docs/en/datasets/lsvt.md)]
315-
- [MLT2017](https://rrc.cvc.uab.es/?ch=8) [[paper](https://ieeexplore.ieee.org/abstract/document/8270168)] [[download](docs/en/datasets/mlt2017.md)]
316-
- [MSRA-TD500](http://www.iapr-tc11.org/mediawiki/index.php/MSRA_Text_Detection_500_Database_(MSRA-TD500)) [[paper](https://ieeexplore.ieee.org/abstract/document/6247787)] [[download](docs/en/datasets/td500.md)]
315+
- [MLT2017](https://rrc.cvc.uab.es/?ch=8) [[paper](https://ieeexplore.ieee.org/abstract/document/8270168)] \[[download](docs/en/datasets/mlt2017.md)]
316+
- [MSRA-TD500](http://www.iapr-tc11.org/mediawiki/index.php/MSRA_Text_Detection_500_Database_(MSRA-TD500)) [[paper](https://ieeexplore.ieee.org/abstract/document/6247787)] \[[download](docs/en/datasets/td500.md)]
317317
- [MTWI-2018](https://tianchi.aliyun.com/competition/entrance/231651/introduction) [[download](docs/en/datasets/mtwi2018.md)]
318318
- [RCTW-17](https://rctw.vlrlab.net/) [[download](docs/en/datasets/rctw17.md)]
319319
- [ReCTS](https://rrc.cvc.uab.es/?ch=12) [[download](docs/en/datasets/rects.md)]
320-
- [SCUT-CTW1500](https://github.com/Yuliang-Liu/Curve-Text-Detector) [[paper](https://www.sciencedirect.com/science/article/pii/S0031320319300664)] [[download](docs/en/datasets/ctw1500.md)]
320+
- [SCUT-CTW1500](https://github.com/Yuliang-Liu/Curve-Text-Detector) [[paper](https://www.sciencedirect.com/science/article/pii/S0031320319300664)] \[[download](docs/en/datasets/ctw1500.md)]
321321
- [SROIE](https://rrc.cvc.uab.es/?ch=13) [[download](docs/en/datasets/sroie.md)]
322322
- [SVT](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) [[download](docs/en/datasets/svt.md)]
323-
- [SynText150k](https://github.com/aim-uofa/AdelaiDet) [[paper](https://arxiv.org/abs/2002.10200)] [[download](docs/en/datasets/syntext150k.md)]
324-
- [SynthText](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) [[paper](https://www.robots.ox.ac.uk/~vgg/publications/2016/Gupta16/)] [[download](docs/en/datasets/synthtext.md)]
323+
- [SynText150k](https://github.com/aim-uofa/AdelaiDet) [[paper](https://arxiv.org/abs/2002.10200)] \[[download](docs/en/datasets/syntext150k.md)]
324+
- [SynthText](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) [[paper](https://www.robots.ox.ac.uk/~vgg/publications/2016/Gupta16/)] \[[download](docs/en/datasets/synthtext.md)]
325325
- [TextOCR](https://textvqa.org/textocr/) [[download](docs/en/datasets/textocr.md)]
326-
- [Total-Text](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) [[paper](https://arxiv.org/abs/1710.10400)] [[download](docs/en/datasets/totaltext.md)]
326+
- [Total-Text](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) [[paper](https://arxiv.org/abs/1710.10400)] \[[download](docs/en/datasets/totaltext.md)]
327327
328328
</details>
329329
330330
<details close markdown>
331331
<summary>Layout Analysis Datasets</summary>
332332
333-
- [PublayNet](https://github.com/ibm-aur-nlp/PubLayNet) [[paper](https://arxiv.org/abs/1908.07836)] [[download](https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz)]
333+
- [PublayNet](https://github.com/ibm-aur-nlp/PubLayNet) [[paper](https://arxiv.org/abs/1908.07836)] \[[download](https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz)]
334334
335335
</details>
336336
337337
<details close markdown>
338338
<summary>Key Information Extraction Datasets</summary>
339339
340-
- [XFUND](https://github.com/doc-analysis/XFUND) [[paper](https://aclanthology.org/2022.findings-acl.253/)] [[download](https://github.com/doc-analysis/XFUND/releases/tag/v1.0)]
340+
- [XFUND](https://github.com/doc-analysis/XFUND) [[paper](https://aclanthology.org/2022.findings-acl.253/)] \[[download](https://github.com/doc-analysis/XFUND/releases/tag/v1.0)]
341341
342342
</details>
343343
344344
<details close markdown>
345345
<summary>Table Recognition Datasets</summary>
346346
347-
- [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet) [[paper](https://arxiv.org/pdf/1911.10683.pdf)] [[download](https://dax-cdn.cdn.appdomain.cloud/dax-pubtabnet/2.0.0/pubtabnet.tar.gz)]
347+
- [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet) [[paper](https://arxiv.org/pdf/1911.10683.pdf)] \[[download](https://dax-cdn.cdn.appdomain.cloud/dax-pubtabnet/2.0.0/pubtabnet.tar.gz)]
348348
349349
</details>
350350
@@ -362,7 +362,7 @@ Frequently asked questions about configuring environment and mindocr, please ref
362362
363363
- 2023/04/01
364364
1. Add new trained models
365-
- [LayoutLMv3](configs/kie/layoutlmv3/) for key information extraction
365+
- [LayoutLMv3](configs/layout/layoutlmv3/) for key information extraction
366366
367367
- 2024/03/20
368368
1. Add new trained models

README_CN.md

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@
3030

3131
<!--start-->
3232
## 简介
33-
MindOCR是一个基于[MindSpore](https://www.mindspore.cn/en) 框架开发的OCR开源工具箱,集成系列主流文字检测识别的算法、模型,并提供易用的训练和推理工具,可以帮助用户快速开发和应用业界SoTA文本检测、文本识别模型,如DBNet/DBNet++和CRNN/SVTR,满足图像文档理解的需求。
33+
MindOCR是一个基于[MindSpore](https://www.mindspore.cn/) 框架开发的OCR开源工具箱,集成系列主流文字检测识别的算法、模型,并提供易用的训练和推理工具,可以帮助用户快速开发和应用业界SoTA文本检测、文本识别模型,如DBNet/DBNet++和CRNN/SVTR,满足图像文档理解的需求。
3434

3535

3636
<details open markdown>
@@ -219,9 +219,9 @@ python tools/infer/text/predict_system.py --image_dir {path_to_img or dir_to_img
219219

220220
### 3. 模型离线推理
221221

222-
你可以在MindOCR中对**MindOCR原生模型****第三方模型**(如PaddleOCR、MMOCR等)进行MindSpore Lite推理。详情请参考[模型离线推理教程](docs/zh/inference/inference_tutorial.md)。
222+
你可以在MindOCR中对 **MindOCR原生模型****第三方模型**(如PaddleOCR、MMOCR等)进行MindSpore Lite推理。详情请参考[模型离线推理教程](docs/zh/inference/inference_tutorial.md)。
223223

224-
## 使用教程
224+
## <span id="使用教程">使用教程</span>
225225

226226
- 数据集
227227
- [数据集准备](docs/zh/datasets/converters.md)
@@ -275,7 +275,7 @@ python tools/infer/text/predict_system.py --image_dir {path_to_img or dir_to_img
275275
<summary>关键信息抽取</summary>
276276
277277
- [x] [LayoutXLM](configs/kie/vi_layoutxlm/README_CN.md) (arXiv'2021)
278-
- [x] [LayoutLMv3](configs/kie/layoutlmv3/README_CN.md) (arXiv'2022)
278+
- [x] [LayoutLMv3](configs/layout/layoutlmv3/README_CN.md) (arXiv'2022)
279279
280280
</details>
281281
@@ -294,7 +294,7 @@ python tools/infer/text/predict_system.py --image_dir {path_to_img or dir_to_img
294294
</details>
295295
296296
297-
关于以上模型的具体训练方法和结果,请参见[configs](https://github.com/mindspore-lab/mindocr/blob/main/configs)下各模型子目录的readme文档。
297+
关于以上模型的具体训练方法和结果,请参见[configs](configs)下各模型子目录的readme文档。
298298
299299
[MindSpore Lite](https://www.mindspore.cn/lite)模型推理的支持列表,
300300
请参见[MindOCR原生模型推理支持列表](docs/zh/inference/mindocr_models_list.md) 和 [第三方模型推理支持列表](docs/zh/inference/thirdparty_models_list.md)(如PaddleOCR)。
@@ -310,45 +310,45 @@ MindOCR提供了[数据格式转换工具](https://github.com/mindspore-lab/mind
310310
- [Born-Digital Images](https://rrc.cvc.uab.es/?ch=1) [[download](docs/zh/datasets/borndigital.md)]
311311
- [CASIA-10K](http://www.nlpr.ia.ac.cn/pal/CASIA10K.html) [[download](docs/zh/datasets/casia10k.md)]
312312
- [CCPD](https://github.com/detectRecog/CCPD) [[download](docs/zh/datasets/ccpd.md)]
313-
- [Chinese Text Recognition Benchmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition) [[paper](https://arxiv.org/abs/2112.15093)] [[download](docs/zh/datasets/chinese_text_recognition.md)]
313+
- [Chinese Text Recognition Benchmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition) [[paper](https://arxiv.org/abs/2112.15093)] \[[download](docs/zh/datasets/chinese_text_recognition.md)]
314314
- [COCO-Text](https://rrc.cvc.uab.es/?ch=5) [[download](docs/zh/datasets/cocotext.md)]
315315
- [CTW](https://ctwdataset.github.io/) [[download](docs/zh/datasets/ctw.md)]
316-
- [ICDAR2015](https://rrc.cvc.uab.es/?ch=4) [[paper](https://rrc.cvc.uab.es/files/short_rrc_2015.pdf)] [[download](docs/zh/datasets/icdar2015.md)]
316+
- [ICDAR2015](https://rrc.cvc.uab.es/?ch=4) [[paper](https://rrc.cvc.uab.es/files/short_rrc_2015.pdf)] \[[download](docs/zh/datasets/icdar2015.md)]
317317
- [ICDAR2019 ArT](https://rrc.cvc.uab.es/?ch=14) [[download](docs/zh/datasets/ic19_art.md)]
318318
- [LSVT](https://rrc.cvc.uab.es/?ch=16) [[download](docs/zh/datasets/lsvt.md)]
319-
- [MLT2017](https://rrc.cvc.uab.es/?ch=8) [[paper](https://ieeexplore.ieee.org/abstract/document/8270168)] [[download](docs/zh/datasets/mlt2017.md)]
320-
- [MSRA-TD500](http://www.iapr-tc11.org/mediawiki/index.php/MSRA_Text_Detection_500_Database_(MSRA-TD500)) [[paper](https://ieeexplore.ieee.org/abstract/document/6247787)] [[download](docs/zh/datasets/td500.md)]
319+
- [MLT2017](https://rrc.cvc.uab.es/?ch=8) [[paper](https://ieeexplore.ieee.org/abstract/document/8270168)] \[[download](docs/zh/datasets/mlt2017.md)]
320+
- [MSRA-TD500](http://www.iapr-tc11.org/mediawiki/index.php/MSRA_Text_Detection_500_Database_(MSRA-TD500)) [[paper](https://ieeexplore.ieee.org/abstract/document/6247787)] \[[download](docs/zh/datasets/td500.md)]
321321
- [MTWI-2018](https://tianchi.aliyun.com/competition/entrance/231651/introduction) [[download](docs/zh/datasets/mtwi2018.md)]
322322
- [RCTW-17](https://rctw.vlrlab.net/) [[download](docs/zh/datasets/rctw17.md)]
323323
- [ReCTS](https://rrc.cvc.uab.es/?ch=12) [[download](docs/zh/datasets/rects.md)]
324-
- [SCUT-CTW1500](https://github.com/Yuliang-Liu/Curve-Text-Detector) [[paper](https://www.sciencedirect.com/science/article/pii/S0031320319300664)] [[download](docs/zh/datasets/ctw1500.md)]
324+
- [SCUT-CTW1500](https://github.com/Yuliang-Liu/Curve-Text-Detector) [[paper](https://www.sciencedirect.com/science/article/pii/S0031320319300664)] \[[download](docs/zh/datasets/ctw1500.md)]
325325
- [SROIE](https://rrc.cvc.uab.es/?ch=13) [[download](docs/zh/datasets/sroie.md)]
326326
- [SVT](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) [[download](docs/zh/datasets/svt.md)]
327-
- [SynText150k](https://github.com/aim-uofa/AdelaiDet) [[paper](https://arxiv.org/abs/2002.10200)] [[download](docs/zh/datasets/syntext150k.md)]
328-
- [SynthText](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) [[paper](https://www.robots.ox.ac.uk/~vgg/publications/2016/Gupta16/)] [[download](docs/zh/datasets/synthtext.md)]
327+
- [SynText150k](https://github.com/aim-uofa/AdelaiDet) [[paper](https://arxiv.org/abs/2002.10200)] \[[download](docs/zh/datasets/syntext150k.md)]
328+
- [SynthText](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) [[paper](https://www.robots.ox.ac.uk/~vgg/publications/2016/Gupta16/)] \[[download](docs/zh/datasets/synthtext.md)]
329329
- [TextOCR](https://textvqa.org/textocr/) [[download](docs/zh/datasets/textocr.md)]
330-
- [Total-Text](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) [[paper](https://arxiv.org/abs/1710.10400)] [[download](docs/zh/datasets/totaltext.md)]
330+
- [Total-Text](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) [[paper](https://arxiv.org/abs/1710.10400)] \[[download](docs/zh/datasets/totaltext.md)]
331331
332332
</details>
333333
334334
<details close markdown>
335335
<summary>版面分析数据集</summary>
336336
337-
- [PublayNet](https://github.com/ibm-aur-nlp/PubLayNet) [[paper](https://arxiv.org/abs/1908.07836)] [[download](https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz)]
337+
- [PublayNet](https://github.com/ibm-aur-nlp/PubLayNet) [[paper](https://arxiv.org/abs/1908.07836)] \[[download](https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz)]
338338
339339
</details>
340340
341341
<details close markdown>
342342
<summary>关键信息抽取数据集</summary>
343343
344-
- [XFUND](https://github.com/doc-analysis/XFUND) [[paper](https://aclanthology.org/2022.findings-acl.253/)] [[download](https://github.com/doc-analysis/XFUND/releases/tag/v1.0)]
344+
- [XFUND](https://github.com/doc-analysis/XFUND) [[paper](https://aclanthology.org/2022.findings-acl.253/)] \[[download](https://github.com/doc-analysis/XFUND/releases/tag/v1.0)]
345345
346346
</details>
347347
348348
<details close markdown>
349349
<summary>表格识别数据集</summary>
350350
351-
- [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet) [[paper](https://arxiv.org/pdf/1911.10683.pdf)] [[download](https://dax-cdn.cdn.appdomain.cloud/dax-pubtabnet/2.0.0/pubtabnet.tar.gz)]
351+
- [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet) [[paper](https://arxiv.org/pdf/1911.10683.pdf)] \[[download](https://dax-cdn.cdn.appdomain.cloud/dax-pubtabnet/2.0.0/pubtabnet.tar.gz)]
352352
353353
</details>
354354
@@ -365,7 +365,7 @@ MindOCR提供了[数据格式转换工具](https://github.com/mindspore-lab/mind
365365
366366
- 2023/04/01
367367
1. 增加新模型
368-
- 关键信息抽取[LayoutLMv3](configs/kie/layoutlmv3/)
368+
- 关键信息抽取[LayoutLMv3](configs/layout/layoutlmv3/)
369369
370370
- 2024/03/20
371371
1. 增加新模型

docs/en/inference/convert_dynamic.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
## Inference - Dynamic Shape Scaling
22

3-
### 1. Introduction
3+
### Introduction
44

55
In some inference scenarios, such as object recognition after detection, the input batch size and image size of the
66
recognition network are not fixed because the number of object and the size of the object are not fixed. If each
@@ -15,11 +15,11 @@ This tool integrates the function of dataset statistics, can count the appropria
1515
and `width` as candidate values, and encapsulates the model conversion tool, thus realizing the automatic model shape
1616
scaling.
1717

18-
### 2. Environment
18+
### Environment
1919

2020
Please refer to [Environment Installation](environment.md) to install MindSpore Lite environment.
2121

22-
### 3. Model
22+
### Model
2323

2424
Currently, ONNX model files are supported, and by MindSpore Lite, they are automatically shape scaling and
2525
converted to MIndIR model files.
@@ -28,7 +28,7 @@ Please make sure that the input model is the dynamic shape version. For example,
2828
shape scaling for H and W, make sure that at least the H and W axes are dynamic, and the shape can be `(1,3,-1,-1)` and
2929
`(-1,3,- 1,-1) `etc.
3030

31-
### 4. Dataset
31+
### Dataset
3232

3333
Two types of data are supported:
3434

@@ -48,11 +48,11 @@ Two types of data are supported:
4848

4949
- Suitable for text recognition models
5050

51-
#### 5. Usages
51+
#### Usages
5252

5353
`cd deploy/models_utils/auto_scaling`
5454

55-
##### 5.1 Command example
55+
##### Command example
5656

5757
- auto shape scaling for batch size
5858

@@ -102,7 +102,7 @@ python converter.py \
102102

103103
The output is a single MindIR model: `model_static.mindir`
104104

105-
##### 5.2 Parameter Details
105+
##### Parameter Details
106106

107107
| Name | Default | Required | Description |
108108
|:------------|:------------|:---------|:-------------------------------------------------|
@@ -114,7 +114,7 @@ The output is a single MindIR model: `model_static.mindir`
114114
| output_path | ./output | N | Path to output model |
115115
| soc_version | Ascend310P3 | N | soc_version for Ascend,Ascend310P3 or Ascend310 |
116116

117-
##### 5.3 Configuration file
117+
##### Configuration file
118118

119119
In addition to the above command line parameters, there are some parameters in
120120
[auto_scaling.yaml](https://github.com/mindspore-lab/mindocr/tree/main/deploy/models_utils/auto_scaling/configs/auto_scaling.yaml) to describe the statistics of

0 commit comments

Comments
 (0)