Skip to content

Commit 2c53f78

Browse files
author
AliceArni
committed
Segment specific reference
1 parent 0ad1cc7 commit 2c53f78

File tree

2 files changed

+63
-37
lines changed

2 files changed

+63
-37
lines changed

docs/sitemap.xml

Lines changed: 33 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -2,134 +2,134 @@
22
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
33
<url>
44
<loc>https://ml-cube.github.io/ml3-platform-docs/</loc>
5-
<lastmod>2025-02-25</lastmod>
5+
<lastmod>2025-04-08</lastmod>
66
</url>
77
<url>
88
<loc>https://ml-cube.github.io/ml3-platform-docs/api/</loc>
9-
<lastmod>2025-02-25</lastmod>
9+
<lastmod>2025-04-08</lastmod>
1010
</url>
1111
<url>
1212
<loc>https://ml-cube.github.io/ml3-platform-docs/api/examples/</loc>
13-
<lastmod>2025-02-25</lastmod>
13+
<lastmod>2025-04-08</lastmod>
1414
</url>
1515
<url>
1616
<loc>https://ml-cube.github.io/ml3-platform-docs/api/python/</loc>
17-
<lastmod>2025-02-25</lastmod>
17+
<lastmod>2025-04-08</lastmod>
1818
</url>
1919
<url>
2020
<loc>https://ml-cube.github.io/ml3-platform-docs/api/python/client/</loc>
21-
<lastmod>2025-02-25</lastmod>
21+
<lastmod>2025-04-08</lastmod>
2222
</url>
2323
<url>
2424
<loc>https://ml-cube.github.io/ml3-platform-docs/api/python/enums/</loc>
25-
<lastmod>2025-02-25</lastmod>
25+
<lastmod>2025-04-08</lastmod>
2626
</url>
2727
<url>
2828
<loc>https://ml-cube.github.io/ml3-platform-docs/api/python/exceptions/</loc>
29-
<lastmod>2025-02-25</lastmod>
29+
<lastmod>2025-04-08</lastmod>
3030
</url>
3131
<url>
3232
<loc>https://ml-cube.github.io/ml3-platform-docs/api/python/models/</loc>
33-
<lastmod>2025-02-25</lastmod>
33+
<lastmod>2025-04-08</lastmod>
3434
</url>
3535
<url>
3636
<loc>https://ml-cube.github.io/ml3-platform-docs/api/rest/</loc>
37-
<lastmod>2025-02-25</lastmod>
37+
<lastmod>2025-04-08</lastmod>
3838
</url>
3939
<url>
4040
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/company/</loc>
41-
<lastmod>2025-02-25</lastmod>
41+
<lastmod>2025-04-08</lastmod>
4242
</url>
4343
<url>
4444
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/data/</loc>
45-
<lastmod>2025-02-25</lastmod>
45+
<lastmod>2025-04-08</lastmod>
4646
</url>
4747
<url>
4848
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/data_schema/</loc>
49-
<lastmod>2025-02-25</lastmod>
49+
<lastmod>2025-04-08</lastmod>
5050
</url>
5151
<url>
5252
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/glossary/</loc>
53-
<lastmod>2025-02-25</lastmod>
53+
<lastmod>2025-04-08</lastmod>
5454
</url>
5555
<url>
5656
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/model/</loc>
57-
<lastmod>2025-02-25</lastmod>
57+
<lastmod>2025-04-08</lastmod>
5858
</url>
5959
<url>
6060
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/project/</loc>
61-
<lastmod>2025-02-25</lastmod>
61+
<lastmod>2025-04-08</lastmod>
6262
</url>
6363
<url>
6464
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/rbac/</loc>
65-
<lastmod>2025-02-25</lastmod>
65+
<lastmod>2025-04-08</lastmod>
6666
</url>
6767
<url>
6868
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/segment/</loc>
69-
<lastmod>2025-02-25</lastmod>
69+
<lastmod>2025-04-08</lastmod>
7070
</url>
7171
<url>
7272
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/task/</loc>
73-
<lastmod>2025-02-25</lastmod>
73+
<lastmod>2025-04-08</lastmod>
7474
</url>
7575
<url>
7676
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/integrations/</loc>
77-
<lastmod>2025-02-25</lastmod>
77+
<lastmod>2025-04-08</lastmod>
7878
</url>
7979
<url>
8080
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/integrations/data_sources/</loc>
81-
<lastmod>2025-02-25</lastmod>
81+
<lastmod>2025-04-08</lastmod>
8282
</url>
8383
<url>
8484
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/integrations/retrain_trigger/</loc>
85-
<lastmod>2025-02-25</lastmod>
85+
<lastmod>2025-04-08</lastmod>
8686
</url>
8787
<url>
8888
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/modules/</loc>
89-
<lastmod>2025-02-25</lastmod>
89+
<lastmod>2025-04-08</lastmod>
9090
</url>
9191
<url>
9292
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/modules/analytics/</loc>
93-
<lastmod>2025-02-25</lastmod>
93+
<lastmod>2025-04-08</lastmod>
9494
</url>
9595
<url>
9696
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/modules/business/</loc>
97-
<lastmod>2025-02-25</lastmod>
97+
<lastmod>2025-04-08</lastmod>
9898
</url>
9999
<url>
100100
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/modules/labeling/</loc>
101-
<lastmod>2025-02-25</lastmod>
101+
<lastmod>2025-04-08</lastmod>
102102
</url>
103103
<url>
104104
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/modules/llm_security/</loc>
105-
<lastmod>2025-02-25</lastmod>
105+
<lastmod>2025-04-08</lastmod>
106106
</url>
107107
<url>
108108
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/modules/rag_evaluation/</loc>
109-
<lastmod>2025-02-25</lastmod>
109+
<lastmod>2025-04-08</lastmod>
110110
</url>
111111
<url>
112112
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/modules/retraining/</loc>
113-
<lastmod>2025-02-25</lastmod>
113+
<lastmod>2025-04-08</lastmod>
114114
</url>
115115
<url>
116116
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/modules/topic_modeling/</loc>
117-
<lastmod>2025-02-25</lastmod>
117+
<lastmod>2025-04-08</lastmod>
118118
</url>
119119
<url>
120120
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/monitoring/</loc>
121-
<lastmod>2025-02-25</lastmod>
121+
<lastmod>2025-04-08</lastmod>
122122
</url>
123123
<url>
124124
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/monitoring/detection_event/</loc>
125-
<lastmod>2025-02-25</lastmod>
125+
<lastmod>2025-04-08</lastmod>
126126
</url>
127127
<url>
128128
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/monitoring/detection_event_rules/</loc>
129-
<lastmod>2025-02-25</lastmod>
129+
<lastmod>2025-04-08</lastmod>
130130
</url>
131131
<url>
132132
<loc>https://ml-cube.github.io/ml3-platform-docs/user_guide/monitoring/drift_explainability/</loc>
133-
<lastmod>2025-02-25</lastmod>
133+
<lastmod>2025-04-08</lastmod>
134134
</url>
135135
</urlset>

md-docs/user_guide/data.md

Lines changed: 30 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@ On the other hand, in RAG tasks there is no target or training dataset.
130130

131131
The [Monitoring] module requires the definition of a Reference dataset representing training, validation and test data.
132132
As mentioned before, historical data belong to both training and old data, but it is important distinguish them.
133-
Therefore, the reference data is initially loaded as historical data and then marked as reference data by providing the timestamp interval.
133+
Therefore, the reference data is initially loaded as historical data and then marked as reference data by providing the timestamp interval. This interval is defined as one or more [from timestamp, to timestamp] tuples. It serves also as default interval being applied to any [Segment] without a specific time range. Optionally, segment-specific intervals can be provided, also as lists of [from timestamp, to timestamp] tuples.
134134

135135
To provide sufficient statistical reliability, reference data must include at least 300 samples. This requirement also applies to the reference of each [Segment], if the task involves any.
136136

@@ -142,16 +142,42 @@ For RAG Tasks, reference data can be used to indicate the type of data expected
142142

143143
??? code-block "SDK Example"
144144

145-
You can set reference data as follow:
145+
You can set the default reference data as follow:
146146

147147
``` py
148148
job_id = client.set_model_reference(
149149
model_id=model_id,
150-
from_timestamp=from_timestamp,
151-
to_timestamp=to_timestamp,
150+
default_reference=ReferenceInfo(
151+
time_intervals=[(from_timestamp, to_timestamp)]
152+
),
152153
)
153154
```
154155

156+
In case you want to set multiple default intervals:
157+
158+
``` py
159+
job_id = client.set_model_reference(
160+
model_id=model_id,
161+
default_reference=ReferenceInfo(
162+
time_intervals=[(from_timestamp_1, to_timestamp_1), (from_timestamp_2, to_timestamp_2)]
163+
),
164+
)
165+
```
166+
167+
If you want to set also segment-specific reference intervals:
168+
169+
``` py
170+
job_id = client.set_model_reference(
171+
model_id=model_id,
172+
default_reference=ReferenceInfo(
173+
time_intervals=[(from_timestamp, to_timestamp)]
174+
),
175+
segment_references=[ReferenceInfo(time_intervals=[(from_timestamp_segment_1, to_timestamp_segment_1)], segment_id=segment_id_1),
176+
ReferenceInfo(time_intervals=[(from_timestamp_segment_2, to_timestamp_segment_2)], segment_id=segment_id_2)]
177+
)
178+
```
179+
Segment intervals can also include multiple (from, to) tuples.
180+
155181
### Production
156182

157183
After the artificial intelligence model is deployed in a production environment, incoming data belongs to the Production context.

0 commit comments

Comments
 (0)