Skip to content

Set seed with prefetch for reproducibility Β #74

@stockeh

Description

@stockeh

Currently, the only way to the seed is with mlx.data.core.set_state, but this only controls the seed for .shuffle(). When using .prefetch with num_threads > 1, the samples returned are not deterministic and therefore not reproducible.

Is there a way to set the seed when prefetching with more than one thread?

import mlx.data.core as dmx
from mlx.data.datasets import load_mnist

dmx.set_state(42)

train = load_mnist(root=None, train=True)
dset = (
    train.shuffle()
    .to_stream()
    .key_transform("image", lambda x: x.astype("float32") / 255)
    .batch(32)
    .prefetch(prefetch_size=4, num_threads=4) # non-deterministic with > 1 thread
)

for i, data in enumerate(dset):
    print(data["image"].sum())
    if i == 2:
        break

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions