-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Open
Description
Hi,
Currently the convert method implementation converts from pytorch/safetensors to MLX format:
We would like the convert to also do the reverse e.g., convert from MLX to pytorch/safetensors.
mlx_lm.convert --help
usage: mlx_lm.convert [-h] [--hf-path HF_PATH] [--mlx-path MLX_PATH] [-q] [--q-group-size Q_GROUP_SIZE] [--q-bits Q_BITS]
[--quant-predicate {mixed_2_6,mixed_3_4,mixed_3_6,mixed_4_6}] [--dtype {float16,bfloat16,float32}] [--upload-repo UPLOAD_REPO]
[-d]
Convert Hugging Face model to MLX format
options:
-h, --help show this help message and exit
--hf-path HF_PATH Path to the Hugging Face model.
--mlx-path MLX_PATH Path to save the MLX model.
-q, --quantize Generate a quantized model.
--q-group-size Q_GROUP_SIZE
Group size for quantization.
--q-bits Q_BITS Bits per weight for quantization.
--quant-predicate {mixed_2_6,mixed_3_4,mixed_3_6,mixed_4_6}
Mixed-bit quantization recipe.
--dtype {float16,bfloat16,float32}
Type to save the non-quantized parameters. Defaults to config.json's `torch_dtype` or the current model weights dtype.
--upload-repo UPLOAD_REPO
The Hugging Face repo to upload the model to.
-d, --dequantize Dequantize a quantized model.
We can add a flag --convert-to where we specify to which format we want the conversion to happen.
Regards,
Metadata
Metadata
Assignees
Labels
No labels