|
| 1 | +// Copyright (c) 2018 ml5 |
| 2 | +// |
| 3 | +// This software is released under the MIT License. |
| 4 | +// https://opensource.org/licenses/MIT |
| 5 | + |
| 6 | +import * as tf from '@tensorflow/tfjs'; |
| 7 | +import IMAGENET_CLASSES_DARKNET from '../utils/IMAGENET_CLASSES_DARKNET'; |
| 8 | + |
| 9 | +const DEFAULTS = { |
| 10 | + DARKNET_URL: 'https://rawgit.com/ml5js/ml5-data-and-models/master/models/darknetclassifier/darknetreference/model.json', |
| 11 | + DARKNET_TINY_URL: 'https://rawgit.com/ml5js/ml5-data-and-models/master/models/darknetclassifier/darknettiny/model.json', |
| 12 | + IMAGE_SIZE_DARKNET: 256, |
| 13 | + IMAGE_SIZE_DARKNET_TINY: 224, |
| 14 | +}; |
| 15 | + |
| 16 | +async function getTopKClasses(logits, topK) { |
| 17 | + const values = await logits.data(); |
| 18 | + const valuesAndIndices = []; |
| 19 | + for (let i = 0; i < values.length; i += 1) { |
| 20 | + valuesAndIndices.push({ |
| 21 | + value: values[i], |
| 22 | + index: i, |
| 23 | + }); |
| 24 | + } |
| 25 | + valuesAndIndices.sort((a, b) => b.value - a.value); |
| 26 | + |
| 27 | + const topkValues = new Float32Array(topK); |
| 28 | + const topkIndices = new Int32Array(topK); |
| 29 | + for (let i = 0; i < topK; i += 1) { |
| 30 | + topkValues[i] = valuesAndIndices[i].value; |
| 31 | + topkIndices[i] = valuesAndIndices[i].index; |
| 32 | + } |
| 33 | + |
| 34 | + const topClassesAndProbs = []; |
| 35 | + for (let i = 0; i < topkIndices.length; i += 1) { |
| 36 | + topClassesAndProbs.push({ |
| 37 | + className: IMAGENET_CLASSES_DARKNET[topkIndices[i]], |
| 38 | + probability: topkValues[i], |
| 39 | + }); |
| 40 | + } |
| 41 | + return topClassesAndProbs; |
| 42 | +} |
| 43 | + |
| 44 | +function preProcess(img, size) { |
| 45 | + let image; |
| 46 | + if (!(img instanceof tf.Tensor)) { |
| 47 | + if (img instanceof HTMLImageElement || img instanceof HTMLVideoElement) { |
| 48 | + image = tf.fromPixels(img); |
| 49 | + } else if (typeof img === 'object' && (img.elt instanceof HTMLImageElement || img.elt instanceof HTMLVideoElement)) { |
| 50 | + image = tf.fromPixels(img.elt); // Handle p5.js image and video. |
| 51 | + } |
| 52 | + } else { |
| 53 | + image = img; |
| 54 | + } |
| 55 | + const normalized = image.toFloat().div(tf.scalar(255)); |
| 56 | + let resized = normalized; |
| 57 | + if (normalized.shape[0] !== size || normalized.shape[1] !== size) { |
| 58 | + const alignCorners = true; |
| 59 | + resized = tf.image.resizeBilinear(normalized, [size, size], alignCorners); |
| 60 | + } |
| 61 | + const batched = resized.reshape([1, size, size, 3]); |
| 62 | + return batched; |
| 63 | +} |
| 64 | + |
| 65 | +export class Darknet { |
| 66 | + constructor(version) { |
| 67 | + this.version = version; |
| 68 | + switch (this.version) { |
| 69 | + case 'reference': |
| 70 | + this.imgSize = DEFAULTS.IMAGE_SIZE_DARKNET; |
| 71 | + break; |
| 72 | + case 'tiny': |
| 73 | + this.imgSize = DEFAULTS.IMAGE_SIZE_DARKNET_TINY; |
| 74 | + break; |
| 75 | + default: |
| 76 | + break; |
| 77 | + } |
| 78 | + } |
| 79 | + |
| 80 | + async load() { |
| 81 | + switch (this.version) { |
| 82 | + case 'reference': |
| 83 | + this.model = await tf.loadModel(DEFAULTS.DARKNET_URL); |
| 84 | + break; |
| 85 | + case 'tiny': |
| 86 | + this.model = await tf.loadModel(DEFAULTS.DARKNET_TINY_URL); |
| 87 | + break; |
| 88 | + default: |
| 89 | + break; |
| 90 | + } |
| 91 | + |
| 92 | + // Warmup the model. |
| 93 | + const result = tf.tidy(() => this.model.predict(tf.zeros([1, this.imgSize, this.imgSize, 3]))); |
| 94 | + await result.data(); |
| 95 | + result.dispose(); |
| 96 | + } |
| 97 | + |
| 98 | + async classify(img, topk = 3) { |
| 99 | + const logits = tf.tidy(() => { |
| 100 | + const imgData = preProcess(img, this.imgSize); |
| 101 | + const predictions = this.model.predict(imgData); |
| 102 | + return tf.softmax(predictions); |
| 103 | + }); |
| 104 | + const classes = await getTopKClasses(logits, topk); |
| 105 | + logits.dispose(); |
| 106 | + return classes; |
| 107 | + } |
| 108 | +} |
| 109 | + |
| 110 | +export async function load(version) { |
| 111 | + if (version !== 'reference' && version !== 'tiny') { |
| 112 | + throw new Error('Please select a version: darknet-reference or darknet-tiny'); |
| 113 | + } |
| 114 | + |
| 115 | + const darknet = new Darknet(version); |
| 116 | + await darknet.load(); |
| 117 | + return darknet; |
| 118 | +} |
0 commit comments