|
| 1 | +// Copyright (c) 2018 ml5 |
| 2 | +// |
| 3 | +// This software is released under the MIT License. |
| 4 | +// https://opensource.org/licenses/MIT |
| 5 | + |
| 6 | +/* eslint prefer-destructuring: ["error", {AssignmentExpression: {array: false}}] */ |
| 7 | +/* eslint no-await-in-loop: "off" */ |
| 8 | +/* |
| 9 | +A LSTM Generator: Run inference mode for a pre-trained LSTM. |
| 10 | +*/ |
| 11 | + |
| 12 | +import * as tf from '@tensorflow/tfjs'; |
| 13 | +import sampleFromDistribution from './../utils/sample'; |
| 14 | +import CheckpointLoader from '../utils/checkpointLoader'; |
| 15 | +import callCallback from '../utils/callcallback'; |
| 16 | + |
| 17 | +const regexCell = /cell_[0-9]|lstm_[0-9]/gi; |
| 18 | +const regexWeights = /weights|weight|kernel|kernels|w/gi; |
| 19 | +const regexFullyConnected = /softmax/gi; |
| 20 | + |
| 21 | +class CharRNN { |
| 22 | + constructor(modelPath, callback) { |
| 23 | + this.ready = false; |
| 24 | + this.model = {}; |
| 25 | + this.cellsAmount = 0; |
| 26 | + this.cells = []; |
| 27 | + this.zeroState = { c: [], h: [] }; |
| 28 | + this.state = { c: [], h: [] }; |
| 29 | + this.vocab = {}; |
| 30 | + this.vocabSize = 0; |
| 31 | + this.probabilities = []; |
| 32 | + this.defaults = { |
| 33 | + seed: 'a', // TODO: use no seed by default |
| 34 | + length: 20, |
| 35 | + temperature: 0.5, |
| 36 | + stateful: false, |
| 37 | + }; |
| 38 | + |
| 39 | + this.ready = callCallback(this.loadCheckpoints(modelPath), callback); |
| 40 | + // this.then = this.ready.then.bind(this.ready); |
| 41 | + } |
| 42 | + |
| 43 | + resetState() { |
| 44 | + this.state = this.zeroState; |
| 45 | + } |
| 46 | + |
| 47 | + setState(state) { |
| 48 | + this.state = state; |
| 49 | + } |
| 50 | + |
| 51 | + getState() { |
| 52 | + return this.state; |
| 53 | + } |
| 54 | + |
| 55 | + async loadCheckpoints(path) { |
| 56 | + const reader = new CheckpointLoader(path); |
| 57 | + const vars = await reader.getAllVariables(); |
| 58 | + Object.keys(vars).forEach((key) => { |
| 59 | + if (key.match(regexCell)) { |
| 60 | + if (key.match(regexWeights)) { |
| 61 | + this.model[`Kernel_${key.match(/[0-9]/)[0]}`] = vars[key]; |
| 62 | + this.cellsAmount += 1; |
| 63 | + } else { |
| 64 | + this.model[`Bias_${key.match(/[0-9]/)[0]}`] = vars[key]; |
| 65 | + } |
| 66 | + } else if (key.match(regexFullyConnected)) { |
| 67 | + if (key.match(regexWeights)) { |
| 68 | + this.model.fullyConnectedWeights = vars[key]; |
| 69 | + } else { |
| 70 | + this.model.fullyConnectedBiases = vars[key]; |
| 71 | + } |
| 72 | + } else { |
| 73 | + this.model[key] = vars[key]; |
| 74 | + } |
| 75 | + }); |
| 76 | + await this.loadVocab(path); |
| 77 | + await this.initCells(); |
| 78 | + return this; |
| 79 | + } |
| 80 | + |
| 81 | + async loadVocab(path) { |
| 82 | + const json = await fetch(`${path}/vocab.json`) |
| 83 | + .then(response => response.json()) |
| 84 | + .catch(err => console.error(err)); |
| 85 | + this.vocab = json; |
| 86 | + this.vocabSize = Object.keys(json).length; |
| 87 | + } |
| 88 | + |
| 89 | + async initCells() { |
| 90 | + this.cells = []; |
| 91 | + this.zeroState = { c: [], h: [] }; |
| 92 | + const forgetBias = tf.tensor(1.0); |
| 93 | + |
| 94 | + const lstm = (i) => { |
| 95 | + const cell = (DATA, C, H) => |
| 96 | + tf.basicLSTMCell(forgetBias, this.model[`Kernel_${i}`], this.model[`Bias_${i}`], DATA, C, H); |
| 97 | + return cell; |
| 98 | + }; |
| 99 | + |
| 100 | + for (let i = 0; i < this.cellsAmount; i += 1) { |
| 101 | + this.zeroState.c.push(tf.zeros([1, this.model[`Bias_${i}`].shape[0] / 4])); |
| 102 | + this.zeroState.h.push(tf.zeros([1, this.model[`Bias_${i}`].shape[0] / 4])); |
| 103 | + this.cells.push(lstm(i)); |
| 104 | + } |
| 105 | + |
| 106 | + this.state = this.zeroState; |
| 107 | + } |
| 108 | + |
| 109 | + async generateInternal(options) { |
| 110 | + await this.ready; |
| 111 | + const seed = options.seed || this.defaults.seed; |
| 112 | + const length = +options.length || this.defaults.length; |
| 113 | + const temperature = +options.temperature || this.defaults.temperature; |
| 114 | + const stateful = options.stateful || this.defaults.stateful; |
| 115 | + if (!stateful) { |
| 116 | + this.state = this.zeroState; |
| 117 | + } |
| 118 | + |
| 119 | + const results = []; |
| 120 | + const userInput = Array.from(seed); |
| 121 | + const encodedInput = []; |
| 122 | + |
| 123 | + userInput.forEach((char) => { |
| 124 | + encodedInput.push(this.vocab[char]); |
| 125 | + }); |
| 126 | + |
| 127 | + let input = encodedInput[0]; |
| 128 | + let probabilitiesNormalized = []; // will contain final probabilities (normalized) |
| 129 | + |
| 130 | + for (let i = 0; i < userInput.length + length + -1; i += 1) { |
| 131 | + const onehotBuffer = tf.buffer([1, this.vocabSize]); |
| 132 | + onehotBuffer.set(1.0, 0, input); |
| 133 | + const onehot = onehotBuffer.toTensor(); |
| 134 | + let output; |
| 135 | + if (this.model.embedding) { |
| 136 | + const embedded = tf.matMul(onehot, this.model.embedding); |
| 137 | + output = tf.multiRNNCell(this.cells, embedded, this.state.c, this.state.h); |
| 138 | + } else { |
| 139 | + output = tf.multiRNNCell(this.cells, onehot, this.state.c, this.state.h); |
| 140 | + } |
| 141 | + |
| 142 | + this.state.c = output[0]; |
| 143 | + this.state.h = output[1]; |
| 144 | + |
| 145 | + const outputH = this.state.h[1]; |
| 146 | + const weightedResult = tf.matMul(outputH, this.model.fullyConnectedWeights); |
| 147 | + const logits = tf.add(weightedResult, this.model.fullyConnectedBiases); |
| 148 | + const divided = tf.div(logits, tf.tensor(temperature)); |
| 149 | + const probabilities = tf.exp(divided); |
| 150 | + probabilitiesNormalized = await tf.div( |
| 151 | + probabilities, |
| 152 | + tf.sum(probabilities), |
| 153 | + ).data(); |
| 154 | + |
| 155 | + if (i < userInput.length - 1) { |
| 156 | + input = encodedInput[i + 1]; |
| 157 | + } else { |
| 158 | + input = sampleFromDistribution(probabilitiesNormalized); |
| 159 | + results.push(input); |
| 160 | + } |
| 161 | + } |
| 162 | + |
| 163 | + let generated = ''; |
| 164 | + results.forEach((char) => { |
| 165 | + const mapped = Object.keys(this.vocab).find(key => this.vocab[key] === char); |
| 166 | + if (mapped) { |
| 167 | + generated += mapped; |
| 168 | + } |
| 169 | + }); |
| 170 | + this.probabilities = probabilitiesNormalized; |
| 171 | + return { |
| 172 | + sample: generated, |
| 173 | + state: this.state, |
| 174 | + }; |
| 175 | + } |
| 176 | + |
| 177 | + reset() { |
| 178 | + this.state = this.zeroState; |
| 179 | + } |
| 180 | + |
| 181 | + // stateless |
| 182 | + async generate(options, callback) { |
| 183 | + this.reset(); |
| 184 | + return callCallback(this.generateInternal(options), callback); |
| 185 | + } |
| 186 | + |
| 187 | + // stateful |
| 188 | + async predict(temp, callback) { |
| 189 | + let probabilitiesNormalized = []; |
| 190 | + const temperature = temp > 0 ? temp : 0.1; |
| 191 | + const outputH = this.state.h[1]; |
| 192 | + const weightedResult = tf.matMul(outputH, this.model.fullyConnectedWeights); |
| 193 | + const logits = tf.add(weightedResult, this.model.fullyConnectedBiases); |
| 194 | + const divided = tf.div(logits, tf.tensor(temperature)); |
| 195 | + const probabilities = tf.exp(divided); |
| 196 | + probabilitiesNormalized = await tf.div( |
| 197 | + probabilities, |
| 198 | + tf.sum(probabilities), |
| 199 | + ).data(); |
| 200 | + |
| 201 | + const sample = sampleFromDistribution(probabilitiesNormalized); |
| 202 | + const result = Object.keys(this.vocab).find(key => this.vocab[key] === sample); |
| 203 | + this.probabilities = probabilitiesNormalized; |
| 204 | + if (callback) { |
| 205 | + callback(result); |
| 206 | + } |
| 207 | + /* eslint max-len: ["error", { "code": 180 }] */ |
| 208 | + const pm = Object.keys(this.vocab).map(c => ({ char: c, probability: this.probabilities[this.vocab[c]] })); |
| 209 | + return { |
| 210 | + sample: result, |
| 211 | + probabilities: pm, |
| 212 | + }; |
| 213 | + } |
| 214 | + |
| 215 | + async feed(inputSeed, callback) { |
| 216 | + await this.ready; |
| 217 | + const seed = Array.from(inputSeed); |
| 218 | + const encodedInput = []; |
| 219 | + |
| 220 | + seed.forEach((char) => { |
| 221 | + encodedInput.push(this.vocab[char]); |
| 222 | + }); |
| 223 | + |
| 224 | + let input = encodedInput[0]; |
| 225 | + for (let i = 0; i < seed.length; i += 1) { |
| 226 | + const onehotBuffer = tf.buffer([1, this.vocabSize]); |
| 227 | + onehotBuffer.set(1.0, 0, input); |
| 228 | + const onehot = onehotBuffer.toTensor(); |
| 229 | + let output; |
| 230 | + if (this.model.embedding) { |
| 231 | + const embedded = tf.matMul(onehot, this.model.embedding); |
| 232 | + output = tf.multiRNNCell(this.cells, embedded, this.state.c, this.state.h); |
| 233 | + } else { |
| 234 | + output = tf.multiRNNCell(this.cells, onehot, this.state.c, this.state.h); |
| 235 | + } |
| 236 | + this.state.c = output[0]; |
| 237 | + this.state.h = output[1]; |
| 238 | + input = encodedInput[i]; |
| 239 | + } |
| 240 | + if (callback) { |
| 241 | + callback(); |
| 242 | + } |
| 243 | + } |
| 244 | +} |
| 245 | + |
| 246 | +const charRNN = (modelPath = './', callback) => new CharRNN(modelPath, callback); |
| 247 | + |
| 248 | +export default charRNN; |
0 commit comments