|
1 |
| -// Step 1: load data or create some data |
2 |
| -let data = [ |
3 |
| - { r: 255, g: 0, b: 0, color: "red-ish" }, |
4 |
| - { r: 254, g: 0, b: 0, color: "red-ish" }, |
5 |
| - { r: 253, g: 0, b: 0, color: "red-ish" }, |
6 |
| - { r: 0, g: 255, b: 0, color: "green-ish" }, |
7 |
| - { r: 0, g: 254, b: 0, color: "green-ish" }, |
8 |
| - { r: 0, g: 253, b: 0, color: "green-ish" }, |
9 |
| - { r: 0, g: 0, b: 255, color: "blue-ish" }, |
10 |
| - { r: 0, g: 0, b: 254, color: "blue-ish" }, |
11 |
| - { r: 0, g: 0, b: 253, color: "blue-ish" }, |
12 |
| -]; |
13 |
| - |
14 |
| -let classifer; |
15 |
| -let r = 255; |
16 |
| -let g = 0; |
17 |
| -let b = 0; |
18 |
| -let rSlider, gSlider, bSlider; |
19 |
| -let label = "training"; |
20 |
| - |
21 |
| -function setup() { |
22 |
| - createCanvas(640, 240); |
23 |
| - rSlider = createSlider(0, 255, 255).position(10, 20); |
24 |
| - gSlider = createSlider(0, 255, 0).position(10, 40); |
25 |
| - bSlider = createSlider(0, 255, 0).position(10, 60); |
26 |
| - |
27 |
| - // Step 2: set your neural network options |
28 |
| - let options = { |
29 |
| - task: "classification", |
30 |
| - debug: true, |
31 |
| - }; |
32 |
| - |
33 |
| - // Step 3: initialize your neural network |
34 |
| - classifier = ml5.neuralNetwork(options); |
35 |
| - |
36 |
| - // Step 4: add data to the neural network |
37 |
| - for (let i = 0; i < data.length; i++) { |
38 |
| - let item = data[i]; |
39 |
| - let inputs = [item.r, item.g, item.b]; |
40 |
| - let outputs = [item.color]; |
41 |
| - classifier.addData(inputs, outputs); |
42 |
| - } |
43 |
| - |
44 |
| - // Step 5: normalize your data; |
45 |
| - classifier.normalizeData(); |
46 |
| - |
47 |
| - // Step 6: train your neural network |
48 |
| - const trainingOptions = { |
49 |
| - epochs: 32, |
50 |
| - batchSize: 12, |
51 |
| - }; |
52 |
| - classifier.train(trainingOptions, finishedTraining); |
53 |
| -} |
54 |
| -// Step 7: use the trained model |
55 |
| -function finishedTraining() { |
56 |
| - classify(); |
57 |
| -} |
58 |
| - |
59 |
| -// Step 8: make a classification |
60 |
| -function classify() { |
61 |
| - const input = [r, g, b]; |
62 |
| - classifier.classify(input, handleResults); |
63 |
| -} |
64 |
| - |
65 |
| -function draw() { |
66 |
| - r = rSlider.value(); |
67 |
| - g = gSlider.value(); |
68 |
| - b = bSlider.value(); |
69 |
| - background(r, g, b); |
70 |
| - textAlign(CENTER, CENTER); |
71 |
| - textSize(64); |
72 |
| - text(label, width / 2, height / 2); |
73 |
| -} |
74 |
| - |
75 |
| -// Step 9: define a function to handle the results of your classification |
76 |
| -function handleResults(results, error) { |
77 |
| - if (error) { |
78 |
| - console.error(error); |
79 |
| - return; |
80 |
| - } |
81 |
| - label = results[0].label; |
82 |
| - // console.log(results); // {label: 'red', confidence: 0.8}; |
83 |
| - classify(); |
84 |
| -} |
| 1 | +// Step 1: load data or create some data |
| 2 | +let data = [ |
| 3 | + { r: 255, g: 0, b: 0, color: "red-ish" }, |
| 4 | + { r: 254, g: 0, b: 0, color: "red-ish" }, |
| 5 | + { r: 253, g: 0, b: 0, color: "red-ish" }, |
| 6 | + { r: 0, g: 255, b: 0, color: "green-ish" }, |
| 7 | + { r: 0, g: 254, b: 0, color: "green-ish" }, |
| 8 | + { r: 0, g: 253, b: 0, color: "green-ish" }, |
| 9 | + { r: 0, g: 0, b: 255, color: "blue-ish" }, |
| 10 | + { r: 0, g: 0, b: 254, color: "blue-ish" }, |
| 11 | + { r: 0, g: 0, b: 253, color: "blue-ish" }, |
| 12 | +]; |
| 13 | + |
| 14 | +let classifer; |
| 15 | +let r = 255; |
| 16 | +let g = 0; |
| 17 | +let b = 0; |
| 18 | +let rSlider, gSlider, bSlider; |
| 19 | +let label = "training"; |
| 20 | + |
| 21 | +function setup() { |
| 22 | + createCanvas(640, 240); |
| 23 | + rSlider = createSlider(0, 255, 255).position(10, 20); |
| 24 | + gSlider = createSlider(0, 255, 0).position(10, 40); |
| 25 | + bSlider = createSlider(0, 255, 0).position(10, 60); |
| 26 | + |
| 27 | + // Step 2: set your neural network options |
| 28 | + let options = { |
| 29 | + task: "classification", |
| 30 | + debug: true, |
| 31 | + }; |
| 32 | + |
| 33 | + // Step 3: initialize your neural network |
| 34 | + classifier = ml5.neuralNetwork(options); |
| 35 | + |
| 36 | + // Step 4: add data to the neural network |
| 37 | + for (let i = 0; i < data.length; i++) { |
| 38 | + let item = data[i]; |
| 39 | + let inputs = [item.r, item.g, item.b]; |
| 40 | + let outputs = [item.color]; |
| 41 | + classifier.addData(inputs, outputs); |
| 42 | + } |
| 43 | + |
| 44 | + // Step 5: normalize your data; |
| 45 | + classifier.normalizeData(); |
| 46 | + |
| 47 | + // Step 6: train your neural network |
| 48 | + const trainingOptions = { |
| 49 | + epochs: 32, |
| 50 | + batchSize: 12, |
| 51 | + }; |
| 52 | + classifier.train(trainingOptions, finishedTraining); |
| 53 | +} |
| 54 | +// Step 7: use the trained model |
| 55 | +function finishedTraining() { |
| 56 | + classify(); |
| 57 | +} |
| 58 | + |
| 59 | +// Step 8: make a classification |
| 60 | +function classify() { |
| 61 | + const input = [r, g, b]; |
| 62 | + classifier.classify(input, handleResults); |
| 63 | +} |
| 64 | + |
| 65 | +function draw() { |
| 66 | + r = rSlider.value(); |
| 67 | + g = gSlider.value(); |
| 68 | + b = bSlider.value(); |
| 69 | + background(r, g, b); |
| 70 | + textAlign(CENTER, CENTER); |
| 71 | + textSize(64); |
| 72 | + text(label, width / 2, height / 2); |
| 73 | +} |
| 74 | + |
| 75 | +// Step 9: define a function to handle the results of your classification |
| 76 | +function handleResults(results, error) { |
| 77 | + if (error) { |
| 78 | + console.error(error); |
| 79 | + return; |
| 80 | + } |
| 81 | + label = results[0].label; |
| 82 | + // console.log(results); // {label: 'red', confidence: 0.8}; |
| 83 | + classify(); |
| 84 | +} |
0 commit comments