|
| 1 | +import json |
| 2 | +import random |
| 3 | +import sys |
| 4 | +import base64 |
| 5 | + |
| 6 | +from io import BytesIO |
| 7 | +from pathlib import Path |
| 8 | +from typing import Any, Dict, List, Optional, Tuple, Union |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +import tvm |
| 12 | +from datasets import load_dataset |
| 13 | +from tvm import relax |
| 14 | +from tvm.contrib import tvmjs |
| 15 | +from tvm.runtime import Device, Module, Object, ShapeTuple |
| 16 | +from tvm.runtime.relax_vm import VirtualMachine |
| 17 | + |
| 18 | +from mlc_llm import MLCEngine |
| 19 | +from mlc_llm.conversation_template import ConvTemplateRegistry |
| 20 | +from mlc_llm.interface.help import HELP |
| 21 | +from mlc_llm.protocol.mlc_chat_config import MLCChatConfig |
| 22 | +from mlc_llm.serve import data, engine_utils |
| 23 | +from mlc_llm.support.argparse import ArgumentParser |
| 24 | +from mlc_llm.support.auto_device import detect_device |
| 25 | +from mlc_llm.support.style import green, red |
| 26 | +from mlc_llm.tokenizers import Tokenizer |
| 27 | + |
| 28 | +prompt_phi_3_5_v_few_shot = """Question: |
| 29 | +Which of the following is the body cavity that contains the pituitary gland? |
| 30 | +Options: |
| 31 | +A. Abdominal |
| 32 | +B. Cranial |
| 33 | +C. Pleural |
| 34 | +D. Spinal |
| 35 | +Answer: B |
| 36 | +Question: |
| 37 | +Where was the most famous site of the mystery cults in Greece? |
| 38 | +Options: |
| 39 | +A. Ephesus |
| 40 | +B. Corinth |
| 41 | +C. Athens |
| 42 | +D. Eleusis |
| 43 | +Answer: D |
| 44 | +
|
| 45 | +""" |
| 46 | + |
| 47 | +prompt_phi_3_5_v_zero_shot = """""" |
| 48 | + |
| 49 | +def encode_image(image): |
| 50 | + rgb_image = image |
| 51 | + buffer = BytesIO() |
| 52 | + rgb_image.save(buffer, format="PNG") |
| 53 | + buffer.seek(0) |
| 54 | + image_str = base64.b64encode(buffer.read()).decode('utf-8') |
| 55 | + return image_str |
| 56 | + |
| 57 | +def construct_prompt_mmmu(ex, prompt_prefix=prompt_phi_3_5_v_zero_shot): |
| 58 | + overall_prompt = prompt_prefix |
| 59 | + if 'question' in ex: |
| 60 | + overall_prompt += ex['question'] + "\n" |
| 61 | + if 'options' in ex: |
| 62 | + options = eval(ex['options']) |
| 63 | + for oi, option in enumerate(options): |
| 64 | + overall_prompt += f"{chr(oi+65)}: {option}\n" |
| 65 | + overall_prompt += "Answer: " |
| 66 | + return overall_prompt |
| 67 | + |
| 68 | +def eval_mmmu(model, engine: MLCEngine, prompt=prompt_phi_3_5_v_zero_shot, temperature=0.0): |
| 69 | + slices = ["Accounting"] |
| 70 | + slice_correct = [] |
| 71 | + slice_total = [] |
| 72 | + for si, sl in enumerate(slices): |
| 73 | + ds = load_dataset("MMMU/MMMU", sl) |
| 74 | + slice_correct_here = 0 |
| 75 | + slice_total_here = 0 |
| 76 | + for exi in range(len(ds['validation'])): |
| 77 | + ex = ds['validation'][exi] |
| 78 | + preproc_ex = construct_prompt_mmmu(ex, prompt_phi_3_5_v_zero_shot) |
| 79 | + base64_image = encode_image(ex["image_1"]) |
| 80 | + response = engine.chat.completions.create( |
| 81 | + messages=[ |
| 82 | + { |
| 83 | + "role": "user", |
| 84 | + "content": [ |
| 85 | + { |
| 86 | + "type":"image_url", |
| 87 | + "image_url": {"url":f"data:image/jpeg;base64,{base64_image}"} |
| 88 | + }, |
| 89 | + { |
| 90 | + "type":"text", |
| 91 | + "text":preproc_ex |
| 92 | + } |
| 93 | + ] |
| 94 | + } |
| 95 | + ], |
| 96 | + model=model, |
| 97 | + stream=False, |
| 98 | + temperature=temperature, |
| 99 | + ) |
| 100 | + ans = response.choices[0].message.content |
| 101 | + if ans.strip()[:1] == ds['validation'][exi]['answer'].strip(): |
| 102 | + slice_correct_here += 1 |
| 103 | + print("Correct") |
| 104 | + else: |
| 105 | + print("Wrong") |
| 106 | + slice_total_here += 1 |
| 107 | + |
| 108 | + slice_correct.append(slice_correct_here) |
| 109 | + slice_total.append(slice_total_here) |
| 110 | + print(f"Slice: {sl} ; Statistics Below\nCorrect: {slice_correct_here}\nTotal: {slice_total_here}\nAccuracy: {slice_correct_here/slice_total_here}") |
| 111 | + |
| 112 | + overall_total = sum(slice_total) |
| 113 | + correct_total = sum(slice_correct) |
| 114 | + print(f"Overall Statistics Below\nCorrect: {correct_total}\nTotal: {overall_total}\nAccuracy: {correct_total/overall_total}") |
| 115 | + |
| 116 | +def main(): |
| 117 | + """The main function to start a DebugChat CLI""" |
| 118 | + parser = ArgumentParser("MLC LLM Correctness Benchmark") |
| 119 | + parser.add_argument( |
| 120 | + "--model", |
| 121 | + type=str, |
| 122 | + help="An MLC model directory that contains `mlc-chat-config.json`", |
| 123 | + required=True, |
| 124 | + ) |
| 125 | + parser.add_argument( |
| 126 | + "--model-lib", |
| 127 | + type=str, |
| 128 | + help="The full path to the model library file to use (e.g. a ``.so`` file).", |
| 129 | + required=True, |
| 130 | + ) |
| 131 | + parser.add_argument( |
| 132 | + "--device", |
| 133 | + type=str, |
| 134 | + default="auto", |
| 135 | + help=HELP["device_compile"] + ' (default: "%(default)s")', |
| 136 | + ) |
| 137 | + parser.add_argument( |
| 138 | + "--temperature", |
| 139 | + default=0.0, |
| 140 | + help="temperature for generation" |
| 141 | + ) |
| 142 | + parsed = parser.parse_args() |
| 143 | + engine = MLCEngine(parsed.model, model_lib=parsed.model_lib) |
| 144 | + eval_mmmu(parsed.model, engine, temperature=parsed.temperature) |
| 145 | + |
| 146 | +if __name__ == "__main__": |
| 147 | + main() |
0 commit comments