You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We use normalized entropy (NE), accuracy, and AUC as the metrics to evaluate the model quality. The accuracy for the reference implementation evaluated on 34,996 requests across 10 inference timestamps are listed below:
85
+
We use normalized entropy (NE), accuracy, and AUC as the metrics to evaluate the model quality. For accepted submissions, all three metrics (NE, Accuracy, AUC) must be within 99% of the reference implementation values. The accuracy for the reference implementation evaluated on 34,996 requests across 10 inference timestamps are listed below:
"--batchsize", default=10, help="batch size used in the benchmark"
87
+
"--batchsize", type=int, default=10, help="batch size used in the benchmark"
88
88
)
89
89
parser.add_argument(
90
-
"--output-trace", default=False, help="Whether to output trace"
90
+
"--output-trace", type=bool, default=False, help="Whether to output trace"
91
91
)
92
92
parser.add_argument(
93
-
"--data-producer-threads", default=8, help="Number of threads used in data producer"
93
+
"--data-producer-threads", type=int, default=8, help="Number of threads used in data producer"
94
94
)
95
95
parser.add_argument(
96
-
"--compute-eval", default=False, help="If true, will run AccuracyOnly mode and outputs both predictions and labels for accuracy calcuations"
96
+
"--compute-eval", type=bool, default=False, help="If true, will run AccuracyOnly mode and outputs both predictions and labels for accuracy calcuations"
97
97
)
98
98
parser.add_argument(
99
-
"--find-peak-performance", default=False, help="Whether to find peak performance in the benchmark"
99
+
"--find-peak-performance", type=bool, default=False, help="Whether to find peak performance in the benchmark"
100
100
)
101
101
parser.add_argument(
102
-
"--dataset-path-prefix", default=f"/home/{os.getlogin()}/dlrmv3_dataset/", help="Prefix to the dataset path. Example: /home/username/"
102
+
"--dataset-path-prefix", type=str, default=f"/home/{os.getlogin()}/dlrmv3_dataset/", help="Prefix to the dataset path. Example: /home/username/"
103
103
)
104
104
parser.add_argument(
105
-
"--warmup-ratio", default=0.1, help="The ratio of the dataset used to warmup SUT"
105
+
"--warmup-ratio", type=float, default=0.1, help="The ratio of the dataset used to warmup SUT"
106
106
)
107
107
parser.add_argument(
108
-
"--num-queries", default=None, help="Number of queries to run in the benchmark"
108
+
"--num-queries", type=int, default=None, help="Number of queries to run in the benchmark"
109
109
)
110
110
parser.add_argument(
111
-
"--target-qps", default=1000, help="Benchmark target QPS. Needs to be tuned for different implementations to balance latency and throughput"
111
+
"--target-qps", type=int, default=1000, help="Benchmark target QPS. Needs to be tuned for different implementations to balance latency and throughput"
112
112
)
113
113
parser.add_argument(
114
-
"--numpy-rand-seed", default=123, help="Numpy random seed"
114
+
"--numpy-rand-seed", type=int, default=123, help="Numpy random seed"
115
115
)
116
116
parser.add_argument(
117
-
"--sparse-quant", default=False, help="Whether to quantize sparse arch"
117
+
"--sparse-quant", type=bool, default=False, help="Whether to quantize sparse arch"
118
118
)
119
119
parser.add_argument(
120
-
"--dataset-percentage", default=0.001, help="Percentage of the dataset to run in the benchmark"
120
+
"--dataset-percentage", type=float, default=0.0001, help="Percentage of the dataset to run in the benchmark"
0 commit comments