@@ -44,6 +44,7 @@ LearnerClassifRanger = R6Class("LearnerClassifRanger",
4444 importance = p_fct(c(" none" , " impurity" , " impurity_corrected" , " permutation" ), tags = " train" ),
4545 keep.inbag = p_lgl(default = FALSE , tags = " train" ),
4646 max.depth = p_int(default = NULL , lower = 0L , special_vals = list (NULL ), tags = " train" ),
47+ min.bucket = p_int(1L , default = 1L , tags = " train" ),
4748 min.node.size = p_int(1L , default = NULL , special_vals = list (NULL ), tags = " train" ),
4849 min.prop = p_dbl(default = 0.1 , tags = " train" ),
4950 minprop = p_dbl(default = 0.1 , tags = " train" ),
@@ -131,8 +132,10 @@ LearnerClassifRanger = R6Class("LearnerClassifRanger",
131132 newdata = ordered_features(task , self )
132133
133134 prediction = invoke(predict ,
134- self $ model , data = newdata ,
135- predict.type = " response" , .args = pv )
135+ self $ model ,
136+ data = newdata ,
137+ predict.type = " response" , .args = pv
138+ )
136139
137140 if (self $ predict_type == " response" ) {
138141 list (response = prediction $ predictions )
0 commit comments