Skip to content

Commit 2c0d558

Browse files
committed
docs: update NEWS
2 parents 16f43f1 + 52fdbfd commit 2c0d558

File tree

3 files changed

+9
-9
lines changed

3 files changed

+9
-9
lines changed

NEWS.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
# mlr3mbo (development version)
22

3-
* refactor: refactored `SurrogateLearner` and `SurrogateLearnerCollection` to allow updating on an asynchronous `Archive`
4-
* feat: added experimental `OptimizerAsyncMbo`, `OptimizerADBO`, `TunerAsyncMbo`, and `TunerADBO` that allow for asynchronous optimization
5-
* feat: added `AcqFunctionStochasticCB` and `AcqFunctionStochasticEI` that are useful for asynchronous optimization
6-
* doc: minor changes to highlight differences between batch and asynchronous objects related to asynchronous support
3+
* refactor: refactored `SurrogateLearner` and `SurrogateLearnerCollection` to allow updating on an asynchronous `Archive`.
4+
* feat: added experimental `OptimizerAsyncMbo`, `OptimizerADBO`, `TunerAsyncMbo`, and `TunerADBO` that allow for asynchronous optimization.
5+
* feat: added `AcqFunctionStochasticCB` and `AcqFunctionStochasticEI` that are useful for asynchronous optimization.
6+
* doc: minor changes to highlight differences between batch and asynchronous objects related to asynchronous support.
77
* refactor: `AcqFunction`s and `AcqOptimizer` gained a `reset()` method.
88

99
# mlr3mbo 0.2.6

README.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ acq_function = acqf("ei")
8181
8282
acq_optimizer = acqo(
8383
opt("local_search", n_initial_points = 10, initial_random_sample_size = 1000, neighbors_per_point = 10),
84-
terminator = trm("evals", n_evals = 3000)
84+
terminator = trm("evals", n_evals = 2000)
8585
)
8686
8787
optimizer = opt("mbo",

README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@ acq_function = acqf("ei")
8787

8888
acq_optimizer = acqo(
8989
opt("local_search", n_initial_points = 10, initial_random_sample_size = 1000, neighbors_per_point = 10),
90-
terminator = trm("evals", n_evals = 3000)
90+
terminator = trm("evals", n_evals = 2000)
9191
)
9292

9393
optimizer = opt("mbo",
@@ -100,9 +100,9 @@ optimizer = opt("mbo",
100100
optimizer$optimize(instance)
101101
```
102102

103-
## x1 x2 x_domain y
104-
## <num> <num> <list> <num>
105-
## 1: 3.090821 2.299709 <list[2]> 0.4104925
103+
## x1 x2 x_domain y
104+
## <num> <num> <list> <num>
105+
## 1: 3.104516 2.396279 <list[2]> 0.412985
106106

107107
We can quickly visualize the contours of the objective function (on log
108108
scale) as well as the sampling behavior of our BO run (lighter blue

0 commit comments

Comments
 (0)