@@ -92,24 +92,24 @@ test_that("ResultAssignerSurrogate passes internal tuned values", {
9292 validate = 0.2 ,
9393 early_stopping = TRUE ,
9494 x = to_tune(0.2 , 0.3 ),
95- iter = to_tune(upper = 1000 , internal = TRUE , aggr = function (x ) 99 ))
95+ iter = to_tune(upper = 1000L , internal = TRUE , aggr = function (x ) 99L ))
9696
9797 instance = ti(
9898 task = tsk(" pima" ),
9999 learner = learner ,
100- resampling = rsmp(" cv" , folds = 3 ),
100+ resampling = rsmp(" cv" , folds = 3L ),
101101 measures = msr(" classif.ce" ),
102- terminator = trm(" evals" , n_evals = 20 ),
102+ terminator = trm(" evals" , n_evals = 20L ),
103103 store_benchmark_result = TRUE
104104 )
105105 surrogate = SurrogateLearner $ new(REGR_KM_DETERM )
106106 acq_function = AcqFunctionEI $ new()
107107 acq_optimizer = AcqOptimizer $ new(opt(" random_search" , batch_size = 2L ), terminator = trm(" evals" , n_evals = 2L ))
108108
109109 tuner = tnr(" mbo" , result_assigner = result_assigner )
110- expect_data_table(tuner $ optimize(instance ), nrows = 1 )
111- expect_list(instance $ archive $ data $ internal_tuned_values , len = 20 , types = " list" )
112- expect_equal(instance $ archive $ data $ internal_tuned_values [[1 ]], list ( iter = 99 ) )
110+ expect_data_table(tuner $ optimize(instance ), nrows = 1L )
111+ expect_list(instance $ archive $ data $ internal_tuned_values , len = 20L , types = " list" )
112+ expect_equal(instance $ archive $ data $ internal_tuned_values [[1L ]] $ iter , 99L )
113113 expect_false(instance $ result_learner_param_vals $ early_stopping )
114- expect_equal(instance $ result_learner_param_vals $ iter , 99 )
114+ expect_equal(instance $ result_learner_param_vals $ iter , 99L )
115115})
0 commit comments