@@ -134,7 +134,7 @@ PipeOpVtreat = R6Class("PipeOpVtreat",
134134 initialize = function (id = " vtreat" , param_vals = list ()) {
135135 ps = ps(
136136 recommended = p_lgl(tags = c(" train" , " predict" )),
137- cols_to_copy = p_uty(custom_check = checkmate :: check_function , tags = c(" train" , " predict" )),
137+ cols_to_copy = p_uty(custom_check = check_function , tags = c(" train" , " predict" )),
138138 # tags stand for: regression vtreat::regression_parameters() / classification vtreat::classification_parameters() / multinomial vtreat::multinomial_parameters()
139139 minFraction = p_dbl(lower = 0 , upper = 1 , default = 0.02 , tags = c(" train" , " regression" , " classification" , " multinomial" )),
140140 smFactor = p_dbl(lower = 0 , upper = Inf , default = 0 , tags = c(" train" , " regression" , " classification" , " multinomial" )),
@@ -207,40 +207,40 @@ PipeOpVtreat = R6Class("PipeOpVtreat",
207207 }
208208
209209 if (length(self $ param_set $ values $ imputation_map )) {
210- checkmate :: assert_subset(names(self $ param_set $ values $ imputation_map ), choices = var_list , empty.ok = TRUE )
210+ assert_subset(names(self $ param_set $ values $ imputation_map ), choices = var_list , empty.ok = TRUE )
211211 }
212212
213213 # FIXME: Handle non-Regr / non-Classif Tasks that inherit from TaskSupervised, #913
214214 task_type = task $ task_type
215215 transform_design = if (task_type == " regr" ) {
216- mlr3misc :: invoke(vtreat :: NumericOutcomeTreatment ,
216+ invoke(vtreat :: NumericOutcomeTreatment ,
217217 var_list = var_list ,
218218 outcome_name = task $ target_names ,
219219 cols_to_copy = self $ param_set $ values $ cols_to_copy(task ),
220- params = vtreat :: regression_parameters(mlr3misc :: insert_named(self $ param_set $ get_values(tags = " regression" ), list (check_for_duplicate_frames = FALSE ))),
220+ params = vtreat :: regression_parameters(insert_named(self $ param_set $ get_values(tags = " regression" ), list (check_for_duplicate_frames = FALSE ))),
221221 imputation_map = self $ param_set $ values $ imputation_map )
222222 } else if (task_type == " classif" ) {
223223 if (length(task $ class_names ) > 2L ) {
224- mlr3misc :: invoke(vtreat :: MultinomialOutcomeTreatment ,
224+ invoke(vtreat :: MultinomialOutcomeTreatment ,
225225 var_list = var_list ,
226226 outcome_name = task $ target_names ,
227227 cols_to_copy = self $ param_set $ values $ cols_to_copy(task ),
228- params = vtreat :: multinomial_parameters(mlr3misc :: insert_named(self $ param_set $ get_values(tags = " multinomial" ), list (check_for_duplicate_frames = FALSE ))),
228+ params = vtreat :: multinomial_parameters(insert_named(self $ param_set $ get_values(tags = " multinomial" ), list (check_for_duplicate_frames = FALSE ))),
229229 imputation_map = self $ param_set $ values $ imputation_map )
230230 } else {
231- mlr3misc :: invoke(vtreat :: BinomialOutcomeTreatment ,
231+ invoke(vtreat :: BinomialOutcomeTreatment ,
232232 var_list = var_list ,
233233 outcome_name = task $ target_names ,
234234 outcome_target = task $ positive ,
235235 cols_to_copy = self $ param_set $ values $ cols_to_copy(task ),
236- params = vtreat :: classification_parameters(mlr3misc :: insert_named(self $ param_set $ get_values(tags = " classification" ), list (check_for_duplicate_frames = FALSE ))),
236+ params = vtreat :: classification_parameters(insert_named(self $ param_set $ get_values(tags = " classification" ), list (check_for_duplicate_frames = FALSE ))),
237237 imputation_map = self $ param_set $ values $ imputation_map )
238238 }
239239 }
240240
241241 # the following exception handling is necessary because vtreat sometimes fails with "no usable vars" if the data is already "clean" enough
242242 vtreat_res = tryCatch(
243- mlr3misc :: invoke(vtreat :: fit_prepare ,
243+ invoke(vtreat :: fit_prepare ,
244244 vps = transform_design ,
245245 dframe = task $ data(),
246246 weights = if (" weights_learner" %in% names(task )) task $ weights_learner $ weight else task $ weights $ weight ,
@@ -261,11 +261,11 @@ PipeOpVtreat = R6Class("PipeOpVtreat",
261261
262262 self $ state $ treatment_plan = vtreat_res $ treatments
263263
264- d_prepared = data.table :: setDT(vtreat_res $ cross_frame )
264+ d_prepared = setDT(vtreat_res $ cross_frame )
265265
266266 feature_subset = self $ state $ treatment_plan $ get_feature_names() # subset to vtreat features
267267 if (self $ param_set $ values $ recommended ) {
268- score_frame = mlr3misc :: invoke(vtreat :: get_score_frame , vps = self $ state $ treatment_plan )
268+ score_frame = invoke(vtreat :: get_score_frame , vps = self $ state $ treatment_plan )
269269 feature_subset = feature_subset [feature_subset %in% score_frame $ varName [score_frame $ recommended ]] # subset to only recommended
270270 }
271271 feature_subset = c(feature_subset , self $ param_set $ values $ cols_to_copy(task )) # respect cols_to_copy
@@ -283,7 +283,7 @@ PipeOpVtreat = R6Class("PipeOpVtreat",
283283
284284 # the following exception handling is necessary because vtreat sometimes fails with "no usable vars" if the data is already "clean" enough
285285 d_prepared = tryCatch(
286- data.table :: setDT(mlr3misc :: invoke(vtreat :: prepare ,
286+ setDT(invoke(vtreat :: prepare ,
287287 treatmentplan = self $ state $ treatment_plan ,
288288 dframe = task $ data())),
289289 error = function (error_condition ) {
@@ -297,7 +297,7 @@ PipeOpVtreat = R6Class("PipeOpVtreat",
297297
298298 feature_subset = self $ state $ treatment_plan $ get_feature_names() # subset to vtreat features
299299 if (self $ param_set $ values $ recommended ) {
300- score_frame = mlr3misc :: invoke(vtreat :: get_score_frame , vps = self $ state $ treatment_plan )
300+ score_frame = invoke(vtreat :: get_score_frame , vps = self $ state $ treatment_plan )
301301 feature_subset = feature_subset [feature_subset %in% score_frame $ varName [score_frame $ recommended ]] # subset to only recommended
302302 }
303303 feature_subset = c(feature_subset , self $ param_set $ values $ cols_to_copy(task )) # respect cols_to_copy
0 commit comments