5858LearnerClassifAvg = R6Class(" LearnerClassifAvg" , inherit = LearnerClassif ,
5959 public = list (
6060 initialize = function (id = " classif.avg" ) {
61- ps = ParamSet $ new( params = list (
62- ParamUty $ new( " measure" , custom_check = check_class_or_character(" MeasureClassif" , mlr_measures ), tags = " train" ),
63- ParamUty $ new( " optimizer" , custom_check = check_optimizer , tags = " train" ),
64- ParamUty $ new( " log_level" , tags = " train" ,
61+ ps = ps (
62+ measure = p_uty( custom_check = check_class_or_character(" MeasureClassif" , mlr_measures ), tags = " train" ),
63+ optimizer = p_uty( custom_check = check_optimizer , tags = " train" ),
64+ log_level = p_uty( tags = " train" ,
6565 function (x ) check_string(x ) %check || % check_integerish(x ))
66- ))
66+ )
6767 ps $ values = list (measure = " classif.ce" , optimizer = " nloptr" , log_level = " warn" )
6868 super $ initialize(
6969 id = id ,
@@ -132,12 +132,12 @@ LearnerClassifAvg = R6Class("LearnerClassifAvg", inherit = LearnerClassif,
132132LearnerRegrAvg = R6Class(" LearnerRegrAvg" , inherit = LearnerRegr ,
133133 public = list (
134134 initialize = function (id = " regr.avg" ) {
135- ps = ParamSet $ new( params = list (
136- ParamUty $ new( " measure" , custom_check = check_class_or_character(" MeasureRegr" , mlr_measures ), tags = " train" ),
137- ParamUty $ new( " optimizer" , custom_check = check_optimizer , tags = " train" ),
138- ParamUty $ new( " log_level" , tags = " train" ,
135+ ps = ps (
136+ measure = p_uty( custom_check = check_class_or_character(" MeasureRegr" , mlr_measures ), tags = " train" ),
137+ optimizer = p_uty( custom_check = check_optimizer , tags = " train" ),
138+ log_level = p_uty( tags = " train" ,
139139 function (x ) check_string(x ) %check || % check_integerish(x ))
140- ))
140+ )
141141 ps $ values = list (measure = " regr.mse" , optimizer = " nloptr" , log_level = " warn" )
142142 super $ initialize(
143143 id = id ,
@@ -185,10 +185,9 @@ optimize_weights_learneravg = function(self, task, n_weights, data) {
185185 }
186186
187187 pars = self $ param_set $ get_values(tags = " train" )
188- ps = ParamSet $ new(params = imap(data , function (x , n ) {
189- if (is.numeric(n )) n = paste0(" w." , n )
190- ParamDbl $ new(id = n , lower = 0 , upper = 1 )
191- }))
188+ pl = rep(list (p_dbl(0 , 1 )), length(data ))
189+ names(pl ) = names(data ) %??% paste0(" w." , seq_along(data ))
190+ ps = do.call(ps , pl )
192191 optimizer = pars $ optimizer
193192 if (inherits(optimizer , " character" )) {
194193 optimizer = bbotk :: opt(optimizer )
@@ -198,7 +197,7 @@ optimize_weights_learneravg = function(self, task, n_weights, data) {
198197 }
199198 measure = pars $ measure
200199 if (is.character(measure )) measure = msr(measure )
201- codomain = ParamSet $ new( list (ParamDbl $ new( id = measure $ id , tags = ifelse(measure $ minimize , " minimize" , " maximize" ))))
200+ codomain = do.call( paradox :: ps , structure( list (p_dbl( tags = ifelse(measure $ minimize , " minimize" , " maximize" ))), names = measure $ id ))
202201 objfun = bbotk :: ObjectiveRFun $ new(
203202 fun = function (xs ) learneravg_objfun(xs , task = task , measure = measure , avg_weight_fun = self $ weighted_average_prediction , data = data ),
204203 domain = ps , codomain = codomain
0 commit comments