@@ -1036,6 +1036,8 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
10361036 { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
10371037 { LLM_TENSOR_OUTPUT, "output" },
10381038 { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
1039+ { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
1040+ { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
10391041 { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
10401042 { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
10411043 { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
@@ -1683,9 +1685,10 @@ struct LLM_TN {
16831685//
16841686
16851687static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
1686- { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
1687- { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
1688- { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
1688+ { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
1689+ { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
1690+ { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
1691+ { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
16891692};
16901693
16911694static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
@@ -5580,8 +5583,12 @@ static void llm_load_hparams(
55805583 case LLM_ARCH_MINICPM:
55815584 {
55825585 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
5586+ ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
5587+ ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
5588+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
55835589
55845590 switch (hparams.n_layer) {
5591+ case 52: model.type = e_model::MODEL_1B; break;
55855592 case 40: model.type = e_model::MODEL_2B; break;
55865593 default: model.type = e_model::MODEL_UNKNOWN;
55875594 }
@@ -7065,7 +7072,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
70657072 LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
70667073 }
70677074
7068- if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
7075+ if (model.arch == LLM_ARCH_MINICPM || model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
70697076 LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
70707077 LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
70717078 LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
@@ -7690,7 +7697,13 @@ static bool llm_load_tensors(
76907697
76917698 layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
76927699
7693- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
7700+ if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
7701+ layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
7702+ layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
7703+ }
7704+ else {
7705+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
7706+ }
76947707
76957708 if (n_expert == 0) {
76967709 layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
@@ -13497,153 +13510,6 @@ struct llm_build_context {
1349713510 return gf;
1349813511 }
1349913512
13500- // ref: https://arxiv.org/abs/2203.03466
13501- // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
13502- // based on the original build_llama() function
13503- struct ggml_cgraph * build_minicpm() {
13504- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
13505-
13506- const int64_t n_embd_head = hparams.n_embd_head_v;
13507- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
13508- GGML_ASSERT(n_embd_head == hparams.n_rot);
13509-
13510- const int64_t n_embd = hparams.n_embd;
13511- //TODO: if the model varies, these parameters need to be read from the model
13512- const int64_t n_embd_base = 256;
13513- const float scale_embd = 12.0f;
13514- const float scale_depth = 1.4f;
13515-
13516- struct ggml_tensor * cur;
13517- struct ggml_tensor * inpL;
13518-
13519- inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
13520-
13521- // scale the input embeddings
13522- inpL = ggml_scale(ctx0, inpL, scale_embd);
13523- cb(inpL, "inp_scaled", -1);
13524-
13525- // inp_pos - contains the positions
13526- struct ggml_tensor * inp_pos = build_inp_pos();
13527-
13528- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
13529- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
13530-
13531- for (int il = 0; il < n_layer; ++il) {
13532- struct ggml_tensor * inpSA = inpL;
13533-
13534- // norm
13535- cur = llm_build_norm(ctx0, inpL, hparams,
13536- model.layers[il].attn_norm, NULL,
13537- LLM_NORM_RMS, cb, il);
13538- cb(cur, "attn_norm", il);
13539-
13540- // self-attention
13541- {
13542- // compute Q and K and RoPE them
13543- struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
13544- cb(Qcur, "Qcur", il);
13545- if (model.layers[il].bq) {
13546- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
13547- cb(Qcur, "Qcur", il);
13548- }
13549-
13550- struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
13551- cb(Kcur, "Kcur", il);
13552- if (model.layers[il].bk) {
13553- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
13554- cb(Kcur, "Kcur", il);
13555- }
13556-
13557- struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
13558- cb(Vcur, "Vcur", il);
13559- if (model.layers[il].bv) {
13560- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
13561- cb(Vcur, "Vcur", il);
13562- }
13563-
13564- Qcur = ggml_rope_ext(
13565- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
13566- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
13567- ext_factor, attn_factor, beta_fast, beta_slow
13568- );
13569- cb(Qcur, "Qcur", il);
13570-
13571- Kcur = ggml_rope_ext(
13572- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
13573- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
13574- ext_factor, attn_factor, beta_fast, beta_slow
13575- );
13576- cb(Kcur, "Kcur", il);
13577-
13578- cur = llm_build_kv(ctx0, lctx, kv_self, gf,
13579- model.layers[il].wo, model.layers[il].bo,
13580- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
13581- }
13582-
13583- if (il == n_layer - 1) {
13584- // skip computing output for unused tokens
13585- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
13586- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
13587- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
13588- }
13589-
13590- // scale_res - scale the hidden states for residual connection
13591- const float scale_res = scale_depth/sqrtf(float(n_layer));
13592- cur = ggml_scale(ctx0, cur, scale_res);
13593- cb(cur, "hidden_scaled", -1);
13594-
13595- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
13596- cb(ffn_inp, "ffn_inp", il);
13597-
13598- // feed-forward network
13599- {
13600- cur = llm_build_norm(ctx0, ffn_inp, hparams,
13601- model.layers[il].ffn_norm, NULL,
13602- LLM_NORM_RMS, cb, il);
13603- cb(cur, "ffn_norm", il);
13604-
13605- cur = llm_build_ffn(ctx0, lctx, cur,
13606- model.layers[il].ffn_up, NULL, NULL,
13607- model.layers[il].ffn_gate, NULL, NULL,
13608- model.layers[il].ffn_down, NULL, NULL,
13609- NULL,
13610- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
13611- cb(cur, "ffn_out", il);
13612- }
13613-
13614- // scale the hidden states for residual connection
13615- cur = ggml_scale(ctx0, cur, scale_res);
13616- cb(cur, "hidden_scaled_ffn", -1);
13617-
13618- cur = ggml_add(ctx0, cur, ffn_inp);
13619- cur = lctx.cvec.apply_to(ctx0, cur, il);
13620- cb(cur, "l_out", il);
13621-
13622- // input for next layer
13623- inpL = cur;
13624- }
13625-
13626- cur = inpL;
13627-
13628- cur = llm_build_norm(ctx0, cur, hparams,
13629- model.output_norm, NULL,
13630- LLM_NORM_RMS, cb, -1);
13631- cb(cur, "result_norm", -1);
13632-
13633- // lm_head scaling
13634- const float scale_lmhead = float(n_embd_base)/float(n_embd);
13635- cur = ggml_scale(ctx0, cur, scale_lmhead);
13636- cb(cur, "lmhead_scaling", -1);
13637-
13638- // lm_head
13639- cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
13640- cb(cur, "result_output", -1);
13641-
13642- ggml_build_forward_expand(gf, cur);
13643-
13644- return gf;
13645- }
13646-
1364713513 struct ggml_cgraph * build_minicpm3() {
1364813514 struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
1364913515
@@ -16742,6 +16608,7 @@ static struct ggml_cgraph * llama_build_graph(
1674216608
1674316609 switch (model.arch) {
1674416610 case LLM_ARCH_LLAMA:
16611+ case LLM_ARCH_MINICPM:
1674516612 case LLM_ARCH_GRANITE:
1674616613 case LLM_ARCH_GRANITE_MOE:
1674716614 {
@@ -16825,10 +16692,6 @@ static struct ggml_cgraph * llama_build_graph(
1682516692 {
1682616693 result = llm.build_internlm2();
1682716694 } break;
16828- case LLM_ARCH_MINICPM:
16829- {
16830- result = llm.build_minicpm();
16831- } break;
1683216695 case LLM_ARCH_MINICPM3:
1683316696 {
1683416697 result = llm.build_minicpm3();
0 commit comments