Skip to content

Commit 8d0cfd5

Browse files
authored
llama: Support MiniCPM-1B (with & w/o longrope) (ggml-org#10559)
1 parent 2759916 commit 8d0cfd5

File tree

4 files changed

+60
-182
lines changed

4 files changed

+60
-182
lines changed

convert_hf_to_gguf.py

Lines changed: 33 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -1831,29 +1831,40 @@ class MiniCPMModel(Model):
18311831
model_arch = gguf.MODEL_ARCH.MINICPM
18321832

18331833
def set_gguf_parameters(self):
1834-
block_count = self.hparams["num_hidden_layers"]
1835-
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
1836-
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
1837-
self.gguf_writer.add_block_count(block_count)
1838-
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
1839-
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
1840-
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
1841-
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
1842-
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
1843-
self.gguf_writer.add_file_type(self.ftype)
1834+
super().set_gguf_parameters()
1835+
embedding_scale = float(self.hparams["scale_emb"])
1836+
self.gguf_writer.add_embedding_scale(embedding_scale)
1837+
logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
1838+
residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
1839+
self.gguf_writer.add_residual_scale(residual_scale)
1840+
logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
1841+
logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
1842+
self.gguf_writer.add_logit_scale(logit_scale)
1843+
logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
1844+
if self.hparams.get("rope_scaling") is not None:
1845+
if self.hparams["rope_scaling"].get("type") == "longrope":
1846+
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
1847+
logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
18441848

1845-
def set_vocab(self):
1846-
self._set_vocab_llama_hf()
1849+
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
1850+
rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
18471851

1848-
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
1849-
if n_kv_head is not None and n_head != n_kv_head:
1850-
n_head //= n_kv_head
1852+
rope_scaling = self.find_hparam(['rope_scaling'], True)
1853+
if rope_scaling is not None:
1854+
long_factors = rope_scaling.get('long_factor', None)
1855+
short_factors = rope_scaling.get('short_factor', None)
18511856

1852-
return (
1853-
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
1854-
.swapaxes(1, 2)
1855-
.reshape(weights.shape)
1856-
)
1857+
if long_factors is None or short_factors is None:
1858+
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
1859+
1860+
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
1861+
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
1862+
1863+
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
1864+
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
1865+
1866+
def set_vocab(self):
1867+
self._set_vocab_sentencepiece()
18571868

18581869
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
18591870
del bid # unused
@@ -1863,9 +1874,9 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
18631874

18641875
# HF models permute some of the tensors, so we need to undo that
18651876
if name.endswith(("q_proj.weight")):
1866-
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
1877+
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
18671878
if name.endswith(("k_proj.weight")):
1868-
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
1879+
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
18691880

18701881
return [(self.map_tensor_name(name), data_torch)]
18711882

gguf-py/gguf/constants.py

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -896,6 +896,8 @@ class MODEL_TENSOR(IntEnum):
896896
MODEL_TENSOR.OUTPUT,
897897
MODEL_TENSOR.OUTPUT_NORM,
898898
MODEL_TENSOR.ROPE_FREQS,
899+
MODEL_TENSOR.ROPE_FACTORS_LONG,
900+
MODEL_TENSOR.ROPE_FACTORS_SHORT,
899901
MODEL_TENSOR.ATTN_NORM,
900902
MODEL_TENSOR.ATTN_Q,
901903
MODEL_TENSOR.ATTN_K,
@@ -1388,9 +1390,10 @@ class TokenType(IntEnum):
13881390

13891391

13901392
class RopeScalingType(Enum):
1391-
NONE = 'none'
1392-
LINEAR = 'linear'
1393-
YARN = 'yarn'
1393+
NONE = 'none'
1394+
LINEAR = 'linear'
1395+
YARN = 'yarn'
1396+
LONGROPE = 'longrope'
13941397

13951398

13961399
class PoolingType(IntEnum):

include/llama.h

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -185,7 +185,8 @@ extern "C" {
185185
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
186186
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
187187
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
188-
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
188+
LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3,
189+
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE,
189190
};
190191

191192
enum llama_pooling_type {

src/llama.cpp

Lines changed: 19 additions & 156 deletions
Original file line numberDiff line numberDiff line change
@@ -1036,6 +1036,8 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
10361036
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
10371037
{ LLM_TENSOR_OUTPUT, "output" },
10381038
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
1039+
{ LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
1040+
{ LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
10391041
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
10401042
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
10411043
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
@@ -1683,9 +1685,10 @@ struct LLM_TN {
16831685
//
16841686

16851687
static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
1686-
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
1687-
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
1688-
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
1688+
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
1689+
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
1690+
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
1691+
{ LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
16891692
};
16901693

16911694
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
@@ -5580,8 +5583,12 @@ static void llm_load_hparams(
55805583
case LLM_ARCH_MINICPM:
55815584
{
55825585
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
5586+
ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
5587+
ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
5588+
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
55835589

55845590
switch (hparams.n_layer) {
5591+
case 52: model.type = e_model::MODEL_1B; break;
55855592
case 40: model.type = e_model::MODEL_2B; break;
55865593
default: model.type = e_model::MODEL_UNKNOWN;
55875594
}
@@ -7065,7 +7072,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
70657072
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
70667073
}
70677074

7068-
if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
7075+
if (model.arch == LLM_ARCH_MINICPM || model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
70697076
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
70707077
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
70717078
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
@@ -7690,7 +7697,13 @@ static bool llm_load_tensors(
76907697

76917698
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
76927699

7693-
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
7700+
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
7701+
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
7702+
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
7703+
}
7704+
else {
7705+
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
7706+
}
76947707

76957708
if (n_expert == 0) {
76967709
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
@@ -13497,153 +13510,6 @@ struct llm_build_context {
1349713510
return gf;
1349813511
}
1349913512

13500-
// ref: https://arxiv.org/abs/2203.03466
13501-
// https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
13502-
// based on the original build_llama() function
13503-
struct ggml_cgraph * build_minicpm() {
13504-
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
13505-
13506-
const int64_t n_embd_head = hparams.n_embd_head_v;
13507-
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
13508-
GGML_ASSERT(n_embd_head == hparams.n_rot);
13509-
13510-
const int64_t n_embd = hparams.n_embd;
13511-
//TODO: if the model varies, these parameters need to be read from the model
13512-
const int64_t n_embd_base = 256;
13513-
const float scale_embd = 12.0f;
13514-
const float scale_depth = 1.4f;
13515-
13516-
struct ggml_tensor * cur;
13517-
struct ggml_tensor * inpL;
13518-
13519-
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
13520-
13521-
// scale the input embeddings
13522-
inpL = ggml_scale(ctx0, inpL, scale_embd);
13523-
cb(inpL, "inp_scaled", -1);
13524-
13525-
// inp_pos - contains the positions
13526-
struct ggml_tensor * inp_pos = build_inp_pos();
13527-
13528-
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
13529-
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
13530-
13531-
for (int il = 0; il < n_layer; ++il) {
13532-
struct ggml_tensor * inpSA = inpL;
13533-
13534-
// norm
13535-
cur = llm_build_norm(ctx0, inpL, hparams,
13536-
model.layers[il].attn_norm, NULL,
13537-
LLM_NORM_RMS, cb, il);
13538-
cb(cur, "attn_norm", il);
13539-
13540-
// self-attention
13541-
{
13542-
// compute Q and K and RoPE them
13543-
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
13544-
cb(Qcur, "Qcur", il);
13545-
if (model.layers[il].bq) {
13546-
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
13547-
cb(Qcur, "Qcur", il);
13548-
}
13549-
13550-
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
13551-
cb(Kcur, "Kcur", il);
13552-
if (model.layers[il].bk) {
13553-
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
13554-
cb(Kcur, "Kcur", il);
13555-
}
13556-
13557-
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
13558-
cb(Vcur, "Vcur", il);
13559-
if (model.layers[il].bv) {
13560-
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
13561-
cb(Vcur, "Vcur", il);
13562-
}
13563-
13564-
Qcur = ggml_rope_ext(
13565-
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
13566-
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
13567-
ext_factor, attn_factor, beta_fast, beta_slow
13568-
);
13569-
cb(Qcur, "Qcur", il);
13570-
13571-
Kcur = ggml_rope_ext(
13572-
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
13573-
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
13574-
ext_factor, attn_factor, beta_fast, beta_slow
13575-
);
13576-
cb(Kcur, "Kcur", il);
13577-
13578-
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
13579-
model.layers[il].wo, model.layers[il].bo,
13580-
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
13581-
}
13582-
13583-
if (il == n_layer - 1) {
13584-
// skip computing output for unused tokens
13585-
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
13586-
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
13587-
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
13588-
}
13589-
13590-
// scale_res - scale the hidden states for residual connection
13591-
const float scale_res = scale_depth/sqrtf(float(n_layer));
13592-
cur = ggml_scale(ctx0, cur, scale_res);
13593-
cb(cur, "hidden_scaled", -1);
13594-
13595-
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
13596-
cb(ffn_inp, "ffn_inp", il);
13597-
13598-
// feed-forward network
13599-
{
13600-
cur = llm_build_norm(ctx0, ffn_inp, hparams,
13601-
model.layers[il].ffn_norm, NULL,
13602-
LLM_NORM_RMS, cb, il);
13603-
cb(cur, "ffn_norm", il);
13604-
13605-
cur = llm_build_ffn(ctx0, lctx, cur,
13606-
model.layers[il].ffn_up, NULL, NULL,
13607-
model.layers[il].ffn_gate, NULL, NULL,
13608-
model.layers[il].ffn_down, NULL, NULL,
13609-
NULL,
13610-
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
13611-
cb(cur, "ffn_out", il);
13612-
}
13613-
13614-
// scale the hidden states for residual connection
13615-
cur = ggml_scale(ctx0, cur, scale_res);
13616-
cb(cur, "hidden_scaled_ffn", -1);
13617-
13618-
cur = ggml_add(ctx0, cur, ffn_inp);
13619-
cur = lctx.cvec.apply_to(ctx0, cur, il);
13620-
cb(cur, "l_out", il);
13621-
13622-
// input for next layer
13623-
inpL = cur;
13624-
}
13625-
13626-
cur = inpL;
13627-
13628-
cur = llm_build_norm(ctx0, cur, hparams,
13629-
model.output_norm, NULL,
13630-
LLM_NORM_RMS, cb, -1);
13631-
cb(cur, "result_norm", -1);
13632-
13633-
// lm_head scaling
13634-
const float scale_lmhead = float(n_embd_base)/float(n_embd);
13635-
cur = ggml_scale(ctx0, cur, scale_lmhead);
13636-
cb(cur, "lmhead_scaling", -1);
13637-
13638-
// lm_head
13639-
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
13640-
cb(cur, "result_output", -1);
13641-
13642-
ggml_build_forward_expand(gf, cur);
13643-
13644-
return gf;
13645-
}
13646-
1364713513
struct ggml_cgraph * build_minicpm3() {
1364813514
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
1364913515

@@ -16742,6 +16608,7 @@ static struct ggml_cgraph * llama_build_graph(
1674216608

1674316609
switch (model.arch) {
1674416610
case LLM_ARCH_LLAMA:
16611+
case LLM_ARCH_MINICPM:
1674516612
case LLM_ARCH_GRANITE:
1674616613
case LLM_ARCH_GRANITE_MOE:
1674716614
{
@@ -16825,10 +16692,6 @@ static struct ggml_cgraph * llama_build_graph(
1682516692
{
1682616693
result = llm.build_internlm2();
1682716694
} break;
16828-
case LLM_ARCH_MINICPM:
16829-
{
16830-
result = llm.build_minicpm();
16831-
} break;
1683216695
case LLM_ARCH_MINICPM3:
1683316696
{
1683416697
result = llm.build_minicpm3();

0 commit comments

Comments
 (0)