2020_cuda_capable = False
2121
2222
23- def _share_cuda_mem (x , n_jobs ):
23+ def _share_cuda_mem (x ):
2424 """Get shared memory space to avoid copying from cpu to gpu when possible.
2525
2626 Allocate a mapped ndarray with a buffer that is pinned and mapped on
@@ -216,7 +216,7 @@ def _setup_cuda_fft_multiply_repeated(n_jobs, h, n_fft, kind="FFT FIR filtering"
216216
217217 try :
218218 # do the IFFT normalization now so we don't have to later
219- h_fft = cupy .asarray (_share_cuda_mem (cuda_dict ["h_fft" ], "cuda" ))
219+ h_fft = cupy .asarray (_share_cuda_mem (cuda_dict ["h_fft" ]))
220220 logger .info (f"Using CUDA for { kind } " )
221221 except Exception as exp :
222222 logger .info (
@@ -315,7 +315,7 @@ def _setup_cuda_fft_resample(n_jobs, W, new_len):
315315 try :
316316 import cupy
317317
318- W = _share_cuda_mem (W , "cuda" )
318+ W = _share_cuda_mem (W )
319319
320320 # do the IFFT normalization now so we don't have to later
321321 W = cupy .asarray (W )
@@ -343,7 +343,7 @@ def _cuda_upload_rfft(x, n, axis=-1):
343343 """Upload and compute rfft."""
344344 import cupy
345345
346- x = _share_cuda_mem (x , "cuda" )
346+ x = _share_cuda_mem (x )
347347
348348 return cupy .fft .rfft (cupy .asarray (x ), n = n , axis = axis )
349349
@@ -352,7 +352,7 @@ def _cuda_irfft_get(x, n, axis=-1):
352352 """Compute irfft and get."""
353353 import cupy
354354
355- x = _share_cuda_mem (x , "cuda" )
355+ x = _share_cuda_mem (x )
356356
357357 return cupy .fft .irfft (x , n = n , axis = axis ).get ()
358358
0 commit comments