88from scipy .special import ndtr
99from sklearn .exceptions import NotFittedError
1010
11- from modAL .models import BayesianOptimizer
1211from modAL .utils .selection import multi_argmax
1312from modAL .utils .data import modALinput
1413
@@ -33,7 +32,7 @@ def UCB(mean, std, beta):
3332"""
3433
3534
36- def optimizer_PI (optimizer : BayesianOptimizer , X : modALinput , tradeoff : float = 0 ) -> np .ndarray :
35+ def optimizer_PI (optimizer , X : modALinput , tradeoff : float = 0 ) -> np .ndarray :
3736 """
3837 Probability of improvement acquisition function for Bayesian optimization.
3938
@@ -54,7 +53,7 @@ def optimizer_PI(optimizer: BayesianOptimizer, X: modALinput, tradeoff: float =
5453 return PI (mean , std , optimizer .y_max , tradeoff )
5554
5655
57- def optimizer_EI (optimizer : BayesianOptimizer , X : modALinput , tradeoff : float = 0 ) -> np .ndarray :
56+ def optimizer_EI (optimizer , X : modALinput , tradeoff : float = 0 ) -> np .ndarray :
5857 """
5958 Expected improvement acquisition function for Bayesian optimization.
6059
@@ -75,7 +74,7 @@ def optimizer_EI(optimizer: BayesianOptimizer, X: modALinput, tradeoff: float =
7574 return EI (mean , std , optimizer .y_max , tradeoff )
7675
7776
78- def optimizer_UCB (optimizer : BayesianOptimizer , X : modALinput , beta : float = 1 ) -> np .ndarray :
77+ def optimizer_UCB (optimizer , X : modALinput , beta : float = 1 ) -> np .ndarray :
7978 """
8079 Upper confidence bound acquisition function for Bayesian optimization.
8180
@@ -103,7 +102,7 @@ def optimizer_UCB(optimizer: BayesianOptimizer, X: modALinput, beta: float = 1)
103102"""
104103
105104
106- def max_PI (optimizer : BayesianOptimizer , X : modALinput , tradeoff : float = 0 ,
105+ def max_PI (optimizer , X : modALinput , tradeoff : float = 0 ,
107106 n_instances : int = 1 ) -> Tuple [np .ndarray , modALinput ]:
108107 """
109108 Maximum PI query strategy. Selects the instance with highest probability of improvement.
@@ -123,7 +122,7 @@ def max_PI(optimizer: BayesianOptimizer, X: modALinput, tradeoff: float = 0,
123122 return query_idx , X [query_idx ]
124123
125124
126- def max_EI (optimizer : BayesianOptimizer , X : modALinput , tradeoff : float = 0 ,
125+ def max_EI (optimizer , X : modALinput , tradeoff : float = 0 ,
127126 n_instances : int = 1 ) -> Tuple [np .ndarray , modALinput ]:
128127 """
129128 Maximum EI query strategy. Selects the instance with highest expected improvement.
@@ -143,7 +142,7 @@ def max_EI(optimizer: BayesianOptimizer, X: modALinput, tradeoff: float = 0,
143142 return query_idx , X [query_idx ]
144143
145144
146- def max_UCB (optimizer : BayesianOptimizer , X : modALinput , beta : float = 1 ,
145+ def max_UCB (optimizer , X : modALinput , beta : float = 1 ,
147146 n_instances : int = 1 ) -> Tuple [np .ndarray , modALinput ]:
148147 """
149148 Maximum UCB query strategy. Selects the instance with highest upper confidence bound.
0 commit comments