Skip to content

Commit 19fc456

Browse files
committed
fix: BaseCommittee import removed
1 parent 3a381bb commit 19fc456

File tree

1 file changed

+6
-8
lines changed

1 file changed

+6
-8
lines changed

modAL/disagreement.py

Lines changed: 6 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -12,10 +12,8 @@
1212
from modAL.utils.data import modALinput
1313
from modAL.utils.selection import multi_argmax
1414

15-
from modAL.models import BaseCommittee
1615

17-
18-
def vote_entropy(committee: BaseCommittee, X: modALinput, **predict_proba_kwargs) -> np.ndarray:
16+
def vote_entropy(committee, X: modALinput, **predict_proba_kwargs) -> np.ndarray:
1917
"""
2018
Calculates the vote entropy for the Committee. First it computes the predictions of X for each learner in the
2119
Committee, then calculates the probability distribution of the votes. The entropy of this distribution is the vote
@@ -49,7 +47,7 @@ def vote_entropy(committee: BaseCommittee, X: modALinput, **predict_proba_kwargs
4947
return entr
5048

5149

52-
def consensus_entropy(committee: BaseCommittee, X: modALinput, **predict_proba_kwargs) -> np.ndarray:
50+
def consensus_entropy(committee, X: modALinput, **predict_proba_kwargs) -> np.ndarray:
5351
"""
5452
Calculates the consensus entropy for the Committee. First it computes the class probabilties of X for each learner
5553
in the Committee, then calculates the consensus probability distribution by averaging the individual class
@@ -73,7 +71,7 @@ def consensus_entropy(committee: BaseCommittee, X: modALinput, **predict_proba_k
7371
return entr
7472

7573

76-
def KL_max_disagreement(committee: BaseCommittee, X: modALinput, **predict_proba_kwargs) -> np.ndarray:
74+
def KL_max_disagreement(committee, X: modALinput, **predict_proba_kwargs) -> np.ndarray:
7775
"""
7876
Calculates the max disagreement for the Committee. First it computes the class probabilties of X for each learner in
7977
the Committee, then calculates the consensus probability distribution by averaging the individual class
@@ -103,7 +101,7 @@ def KL_max_disagreement(committee: BaseCommittee, X: modALinput, **predict_proba
103101
return np.max(learner_KL_div, axis=1)
104102

105103

106-
def vote_entropy_sampling(committee: BaseCommittee, X: modALinput,
104+
def vote_entropy_sampling(committee, X: modALinput,
107105
n_instances: int = 1,**disagreement_measure_kwargs) -> Tuple[np.ndarray, modALinput]:
108106
"""
109107
Vote entropy sampling strategy.
@@ -123,7 +121,7 @@ def vote_entropy_sampling(committee: BaseCommittee, X: modALinput,
123121
return query_idx, X[query_idx]
124122

125123

126-
def consensus_entropy_sampling(committee: BaseCommittee, X: modALinput,
124+
def consensus_entropy_sampling(committee, X: modALinput,
127125
n_instances: int = 1,**disagreement_measure_kwargs) -> Tuple[np.ndarray, modALinput]:
128126
"""
129127
Consensus entropy sampling strategy.
@@ -143,7 +141,7 @@ def consensus_entropy_sampling(committee: BaseCommittee, X: modALinput,
143141
return query_idx, X[query_idx]
144142

145143

146-
def max_disagreement_sampling(committee: BaseCommittee, X: modALinput,
144+
def max_disagreement_sampling(committee, X: modALinput,
147145
n_instances: int = 1,**disagreement_measure_kwargs) -> Tuple[np.ndarray, modALinput]:
148146
"""
149147
Maximum disagreement sampling strategy.

0 commit comments

Comments
 (0)