66import sys
77import numpy as np
88
9- from sklearn .utils import check_array
109from sklearn .base import BaseEstimator
1110from modAL .utils .validation import check_class_labels , check_class_proba
1211from modAL .uncertainty import uncertainty_sampling
@@ -109,8 +108,8 @@ def __init__(
109108 self .X_training = None
110109 self .y_training = None
111110 elif type (X_training ) != type (None ) and type (y_training ) != type (None ):
112- self .X_training = check_array ( X_training )
113- self .y_training = check_array ( y_training , ensure_2d = False )
111+ self .X_training = X_training
112+ self .y_training = y_training
114113 self ._fit_to_known (bootstrap = bootstrap_init , ** fit_kwargs )
115114
116115 def _add_training_data (self , X , y ):
@@ -133,7 +132,6 @@ def _add_training_data(self, X, y):
133132 have to agree with the training samples which the
134133 classifier has seen.
135134 """
136- X , y = check_array (X ), check_array (y , ensure_2d = False )
137135 assert len (X ) == len (y ), 'the number of new data points and number of labels must match'
138136
139137 if type (self .X_training ) != type (None ):
@@ -265,7 +263,6 @@ def query(self, X, **query_kwargs):
265263 X[query_idx]: numpy.ndarray of shape (n_instances, n_features)
266264 The instances from X_pool chosen to be labelled.
267265 """
268- check_array (X , ensure_2d = True )
269266
270267 query_idx , query_instances = self .query_strategy (self .estimator , X , ** query_kwargs )
271268 return query_idx , query_instances
@@ -424,8 +421,6 @@ def query(self, X, **query_kwargs):
424421 X[query_idx]: numpy.ndarray of shape (n_instances, n_features)
425422 The instances from X_pool chosen to be labelled.
426423 """
427- check_array (X , ensure_2d = True )
428-
429424 query_idx , query_instances = self .query_strategy (self , X , ** query_kwargs )
430425 return query_idx , X [query_idx ]
431426
@@ -624,7 +619,6 @@ def vote(self, X, **predict_kwargs):
624619 The predicted class for each learner in the Committee
625620 and each sample in X.
626621 """
627- check_array (X , ensure_2d = True )
628622 prediction = np .zeros (shape = (X .shape [0 ], len (self .learner_list )))
629623
630624 for learner_idx , learner in enumerate (self .learner_list ):
@@ -651,8 +645,6 @@ def vote_proba(self, X, **predict_proba_kwargs):
651645
652646 """
653647
654- check_array (X , ensure_2d = True )
655-
656648 # get dimensions
657649 n_samples = X .shape [0 ]
658650 n_learners = len (self .learner_list )
@@ -780,7 +772,6 @@ def vote(self, X, **predict_kwargs):
780772 vote: numpy.ndarray of shape (n_samples, n_regressors)
781773 The predicted value for each regressor in the CommitteeRegressor and each sample in X.
782774 """
783- check_array (X , ensure_2d = True )
784775 prediction = np .zeros (shape = (len (X ), len (self .learner_list )))
785776
786777 for learner_idx , learner in enumerate (self .learner_list ):
0 commit comments