@@ -642,7 +642,7 @@ def test_keras(self):
642642
643643 def test_sklearn (self ):
644644 learner = modAL .models .learners .ActiveLearner (
645- estimator = RandomForestClassifier (),
645+ estimator = RandomForestClassifier (n_estimators = 10 ),
646646 X_training = np .random .rand (10 , 10 ),
647647 y_training = np .random .randint (0 , 2 , size = (10 ,))
648648 )
@@ -667,7 +667,7 @@ def test_sparse_matrices(self):
667667 initial_idx = np .random .choice (range (n_samples ), size = 5 , replace = False )
668668
669669 learner = modAL .models .learners .ActiveLearner (
670- estimator = RandomForestClassifier (), query_strategy = query_strategy ,
670+ estimator = RandomForestClassifier (n_estimators = 10 ), query_strategy = query_strategy ,
671671 X_training = X_pool [initial_idx ], y_training = y_pool [initial_idx ]
672672 )
673673 query_idx , query_inst = learner .query (X_pool )
@@ -949,7 +949,7 @@ def test_strategies(self):
949949 X_training = np .random .rand (n_pool_instances , 5 )
950950 y_training = np .random .randint (0 , 2 , size = (n_pool_instances , n_classes ))
951951 X_pool = np .random .rand (n_pool_instances , 5 )
952- classifier = OneVsRestClassifier (SVC (probability = True ))
952+ classifier = OneVsRestClassifier (SVC (probability = True , gamma = 'auto' ))
953953 classifier .fit (X_training , y_training )
954954 modAL .multilabel .mean_max_loss (classifier , X_pool , n_query_instances )
955955 modAL .multilabel .max_loss (classifier , X_pool , n_query_instances )
0 commit comments