1010
1111from modAL .utils .selection import multi_argmax
1212from modAL .utils .data import modALinput
13-
13+ from modAL . models . base import BaseLearner
1414
1515def PI (mean , std , max_val , tradeoff ):
1616 return ndtr ((mean - max_val - tradeoff )/ std )
@@ -32,7 +32,7 @@ def UCB(mean, std, beta):
3232"""
3333
3434
35- def optimizer_PI (optimizer , X : modALinput , tradeoff : float = 0 ) -> np .ndarray :
35+ def optimizer_PI (optimizer : BaseLearner , X : modALinput , tradeoff : float = 0 ) -> np .ndarray :
3636 """
3737 Probability of improvement acquisition function for Bayesian optimization.
3838
@@ -53,7 +53,7 @@ def optimizer_PI(optimizer, X: modALinput, tradeoff: float = 0) -> np.ndarray:
5353 return PI (mean , std , optimizer .y_max , tradeoff )
5454
5555
56- def optimizer_EI (optimizer , X : modALinput , tradeoff : float = 0 ) -> np .ndarray :
56+ def optimizer_EI (optimizer : BaseLearner , X : modALinput , tradeoff : float = 0 ) -> np .ndarray :
5757 """
5858 Expected improvement acquisition function for Bayesian optimization.
5959
@@ -74,7 +74,7 @@ def optimizer_EI(optimizer, X: modALinput, tradeoff: float = 0) -> np.ndarray:
7474 return EI (mean , std , optimizer .y_max , tradeoff )
7575
7676
77- def optimizer_UCB (optimizer , X : modALinput , beta : float = 1 ) -> np .ndarray :
77+ def optimizer_UCB (optimizer : BaseLearner , X : modALinput , beta : float = 1 ) -> np .ndarray :
7878 """
7979 Upper confidence bound acquisition function for Bayesian optimization.
8080
@@ -102,7 +102,7 @@ def optimizer_UCB(optimizer, X: modALinput, beta: float = 1) -> np.ndarray:
102102"""
103103
104104
105- def max_PI (optimizer , X : modALinput , tradeoff : float = 0 ,
105+ def max_PI (optimizer : BaseLearner , X : modALinput , tradeoff : float = 0 ,
106106 n_instances : int = 1 ) -> Tuple [np .ndarray , modALinput ]:
107107 """
108108 Maximum PI query strategy. Selects the instance with highest probability of improvement.
@@ -122,7 +122,7 @@ def max_PI(optimizer, X: modALinput, tradeoff: float = 0,
122122 return query_idx , X [query_idx ]
123123
124124
125- def max_EI (optimizer , X : modALinput , tradeoff : float = 0 ,
125+ def max_EI (optimizer : BaseLearner , X : modALinput , tradeoff : float = 0 ,
126126 n_instances : int = 1 ) -> Tuple [np .ndarray , modALinput ]:
127127 """
128128 Maximum EI query strategy. Selects the instance with highest expected improvement.
@@ -142,7 +142,7 @@ def max_EI(optimizer, X: modALinput, tradeoff: float = 0,
142142 return query_idx , X [query_idx ]
143143
144144
145- def max_UCB (optimizer , X : modALinput , beta : float = 1 ,
145+ def max_UCB (optimizer : BaseLearner , X : modALinput , beta : float = 1 ,
146146 n_instances : int = 1 ) -> Tuple [np .ndarray , modALinput ]:
147147 """
148148 Maximum UCB query strategy. Selects the instance with highest upper confidence bound.
0 commit comments