Skip to content

Commit e01f0be

Browse files
committed
fix: type annotations added
1 parent 2a50057 commit e01f0be

File tree

2 files changed

+8
-8
lines changed

2 files changed

+8
-8
lines changed

modAL/acquisition.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010

1111
from modAL.utils.selection import multi_argmax
1212
from modAL.utils.data import modALinput
13-
13+
from modAL.models.base import BaseLearner
1414

1515
def PI(mean, std, max_val, tradeoff):
1616
return ndtr((mean - max_val - tradeoff)/std)
@@ -32,7 +32,7 @@ def UCB(mean, std, beta):
3232
"""
3333

3434

35-
def optimizer_PI(optimizer, X: modALinput, tradeoff: float = 0) -> np.ndarray:
35+
def optimizer_PI(optimizer: BaseLearner, X: modALinput, tradeoff: float = 0) -> np.ndarray:
3636
"""
3737
Probability of improvement acquisition function for Bayesian optimization.
3838
@@ -53,7 +53,7 @@ def optimizer_PI(optimizer, X: modALinput, tradeoff: float = 0) -> np.ndarray:
5353
return PI(mean, std, optimizer.y_max, tradeoff)
5454

5555

56-
def optimizer_EI(optimizer, X: modALinput, tradeoff: float = 0) -> np.ndarray:
56+
def optimizer_EI(optimizer: BaseLearner, X: modALinput, tradeoff: float = 0) -> np.ndarray:
5757
"""
5858
Expected improvement acquisition function for Bayesian optimization.
5959
@@ -74,7 +74,7 @@ def optimizer_EI(optimizer, X: modALinput, tradeoff: float = 0) -> np.ndarray:
7474
return EI(mean, std, optimizer.y_max, tradeoff)
7575

7676

77-
def optimizer_UCB(optimizer, X: modALinput, beta: float = 1) -> np.ndarray:
77+
def optimizer_UCB(optimizer: BaseLearner, X: modALinput, beta: float = 1) -> np.ndarray:
7878
"""
7979
Upper confidence bound acquisition function for Bayesian optimization.
8080
@@ -102,7 +102,7 @@ def optimizer_UCB(optimizer, X: modALinput, beta: float = 1) -> np.ndarray:
102102
"""
103103

104104

105-
def max_PI(optimizer, X: modALinput, tradeoff: float = 0,
105+
def max_PI(optimizer: BaseLearner, X: modALinput, tradeoff: float = 0,
106106
n_instances: int = 1) -> Tuple[np.ndarray, modALinput]:
107107
"""
108108
Maximum PI query strategy. Selects the instance with highest probability of improvement.
@@ -122,7 +122,7 @@ def max_PI(optimizer, X: modALinput, tradeoff: float = 0,
122122
return query_idx, X[query_idx]
123123

124124

125-
def max_EI(optimizer, X: modALinput, tradeoff: float = 0,
125+
def max_EI(optimizer: BaseLearner, X: modALinput, tradeoff: float = 0,
126126
n_instances: int = 1) -> Tuple[np.ndarray, modALinput]:
127127
"""
128128
Maximum EI query strategy. Selects the instance with highest expected improvement.
@@ -142,7 +142,7 @@ def max_EI(optimizer, X: modALinput, tradeoff: float = 0,
142142
return query_idx, X[query_idx]
143143

144144

145-
def max_UCB(optimizer, X: modALinput, beta: float = 1,
145+
def max_UCB(optimizer: BaseLearner, X: modALinput, beta: float = 1,
146146
n_instances: int = 1) -> Tuple[np.ndarray, modALinput]:
147147
"""
148148
Maximum UCB query strategy. Selects the instance with highest upper confidence bound.

modAL/disagreement.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111

1212
from modAL.utils.data import modALinput
1313
from modAL.utils.selection import multi_argmax
14-
from .models.base import BaseCommittee
14+
from modAL.models.base import BaseCommittee
1515

1616

1717
def vote_entropy(committee: BaseCommittee, X: modALinput, **predict_proba_kwargs) -> np.ndarray:

0 commit comments

Comments
 (0)