@@ -312,6 +312,22 @@ def _set_classes(self):
312312 def _add_training_data (self , X : modALinput , y : modALinput ):
313313 super ()._add_training_data (X , y )
314314
315+ def fit (self , X : modALinput , y : modALinput , ** fit_kwargs ) -> 'BaseCommittee' :
316+ """
317+ Fits every learner to a subset sampled with replacement from X. Calling this method makes the learner forget the
318+ data it has seen up until this point and replaces it with X! If you would like to perform bootstrapping on each
319+ learner using the data it has seen, use the method .rebag()!
320+
321+ Calling this method makes the learner forget the data it has seen up until this point and replaces it with X!
322+
323+ Args:
324+ X: The samples to be fitted on.
325+ y: The corresponding labels.
326+ **fit_kwargs: Keyword arguments to be passed to the fit method of the predictor.
327+ """
328+ super ().fit (X , y , ** fit_kwargs )
329+ self ._set_classes ()
330+
315331 def teach (self , X : modALinput , y : modALinput , bootstrap : bool = False , only_new : bool = False , ** fit_kwargs ) -> None :
316332 """
317333 Adds X and y to the known training data for each learner and retrains learners with the augmented dataset.
@@ -323,7 +339,6 @@ def teach(self, X: modALinput, y: modALinput, bootstrap: bool = False, only_new:
323339 only_new: If True, the model is retrained using only X and y, ignoring the previously provided examples.
324340 **fit_kwargs: Keyword arguments to be passed to the fit method of the predictor.
325341 """
326-
327342 super ().teach (X , y , bootstrap = bootstrap , only_new = only_new , ** fit_kwargs )
328343 self ._set_classes ()
329344
0 commit comments