@@ -71,7 +71,7 @@ def _add_training_data(self, X: modALinput, y: modALinput) -> None:
7171 If the classifier has been fitted, the features in X have to agree with the training samples which the
7272 classifier has seen.
7373 """
74- check_X_y (X , y , accept_sparse = True , ensure_2d = False , allow_nd = True , multi_output = True )
74+ check_X_y (X , y , accept_sparse = True , ensure_2d = False , allow_nd = True , multi_output = True , dtype = None )
7575
7676 if self .X_training is None :
7777 self .X_training = X
@@ -117,7 +117,7 @@ def _fit_on_new(self, X: modALinput, y: modALinput, bootstrap: bool = False, **f
117117 Returns:
118118 self
119119 """
120- check_X_y (X , y , accept_sparse = True , ensure_2d = False , allow_nd = True , multi_output = True )
120+ check_X_y (X , y , accept_sparse = True , ensure_2d = False , allow_nd = True , multi_output = True , dtype = None )
121121
122122 if not bootstrap :
123123 self .estimator .fit (X , y , ** fit_kwargs )
@@ -146,7 +146,7 @@ def fit(self, X: modALinput, y: modALinput, bootstrap: bool = False, **fit_kwarg
146146 Returns:
147147 self
148148 """
149- check_X_y (X , y , accept_sparse = True , ensure_2d = False , allow_nd = True , multi_output = True )
149+ check_X_y (X , y , accept_sparse = True , ensure_2d = False , allow_nd = True , multi_output = True , dtype = None )
150150 self .X_training , self .y_training = X , y
151151 return self ._fit_to_known (bootstrap = bootstrap , ** fit_kwargs )
152152
0 commit comments