|
| 1 | +"""DPO loss function.""" |
| 2 | + |
| 3 | +from typing import Any, Dict, Tuple |
| 4 | + |
| 5 | +import torch |
| 6 | +import torch.nn.functional as F |
| 7 | + |
| 8 | +from trinity.algorithm.policy_loss_fn.policy_loss_fn import POLICY_LOSS_FN, PolicyLossFn |
| 9 | +from trinity.algorithm.utils import masked_sum |
| 10 | + |
| 11 | + |
| 12 | +@POLICY_LOSS_FN.register_module("dpo") |
| 13 | +class DPOLossFn(PolicyLossFn): |
| 14 | + def __init__( |
| 15 | + self, |
| 16 | + beta: float = 0.1, |
| 17 | + label_smoothing: float = 0.0, |
| 18 | + ) -> None: |
| 19 | + self.beta = beta |
| 20 | + self.label_smoothing = label_smoothing |
| 21 | + |
| 22 | + def __call__( |
| 23 | + self, |
| 24 | + logprob: torch.Tensor, |
| 25 | + old_logprob: torch.Tensor, |
| 26 | + action_mask: torch.Tensor, |
| 27 | + advantages: torch.Tensor, |
| 28 | + experiences: Any, |
| 29 | + **kwargs, |
| 30 | + ) -> Tuple[torch.Tensor, Dict]: |
| 31 | + chosen_logprob = logprob[::2] |
| 32 | + rejected_logprob = logprob[1::2] |
| 33 | + chosen_mask = action_mask[::2] |
| 34 | + rejected_mask = action_mask[1::2] |
| 35 | + chosen_logprob_sum = masked_sum(chosen_logprob, chosen_mask) |
| 36 | + rejected_logprob_sum = masked_sum(rejected_logprob, rejected_mask) |
| 37 | + |
| 38 | + chosen_ref_logprob = old_logprob[::2] |
| 39 | + rejected_ref_logprob = old_logprob[1::2] |
| 40 | + chosen_ref_logprob_sum = masked_sum(chosen_ref_logprob, chosen_mask) |
| 41 | + rejected_ref_logprob_sum = masked_sum(rejected_ref_logprob, rejected_mask) |
| 42 | + |
| 43 | + chosen_ratios = chosen_logprob_sum - chosen_ref_logprob_sum |
| 44 | + rejected_ratios = rejected_logprob_sum - rejected_ref_logprob_sum |
| 45 | + logits = chosen_ratios - rejected_ratios |
| 46 | + # TODO: support other loss functions |
| 47 | + losses = ( |
| 48 | + -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing) |
| 49 | + - F.logsigmoid(-self.beta * logits) * self.label_smoothing |
| 50 | + ) |
| 51 | + loss = losses.mean() |
| 52 | + chosen_reward = self.beta * chosen_ratios.detach().mean().item() |
| 53 | + rejected_reward = self.beta * rejected_ratios.detach().mean().item() |
| 54 | + accuracy_mean = (chosen_ratios.detach() > rejected_ratios.detach()).float().mean().item() |
| 55 | + return loss, { |
| 56 | + "chosen_reward": chosen_reward, |
| 57 | + "rejected_reward": rejected_reward, |
| 58 | + "accuracy_mean": accuracy_mean, |
| 59 | + "dpo_loss": loss.detach().item(), |
| 60 | + } |
| 61 | + |
| 62 | + @classmethod |
| 63 | + def default_args(cls) -> Dict: |
| 64 | + return { |
| 65 | + "beta": 0.1, |
| 66 | + "label_smoothing": 0.0, |
| 67 | + } |
0 commit comments