|
| 1 | +import asyncio |
| 2 | +import shutil |
| 3 | +from collections import deque |
| 4 | + |
| 5 | +import torch |
| 6 | +from parameterized import parameterized_class |
| 7 | + |
| 8 | +from tests.tools import RayUnittestBaseAysnc, get_template_config |
| 9 | +from trinity.algorithm.sample_strategy import SAMPLE_STRATEGY |
| 10 | +from trinity.algorithm.sample_strategy.sample_strategy import SampleStrategy |
| 11 | +from trinity.buffer.buffer import get_buffer_writer |
| 12 | +from trinity.common.config import ExperienceBufferConfig, ReplayBufferConfig |
| 13 | +from trinity.common.constants import StorageType |
| 14 | +from trinity.common.experience import Experience |
| 15 | + |
| 16 | + |
| 17 | +@parameterized_class( |
| 18 | + ("exp_write_batch_size",), |
| 19 | + [ |
| 20 | + (3,), |
| 21 | + (6,), |
| 22 | + ], |
| 23 | +) |
| 24 | +class ExperienceStorageTest(RayUnittestBaseAysnc): |
| 25 | + def setUp(self): |
| 26 | + self.config = get_template_config() |
| 27 | + self.num_steps = 20 |
| 28 | + |
| 29 | + def _default_exp_list(self): |
| 30 | + return [ |
| 31 | + [ |
| 32 | + Experience( |
| 33 | + tokens=torch.tensor([float(k) for k in range(j + 3)]), |
| 34 | + reward=float(i), # using reward to carry model_version for testing |
| 35 | + prompt_length=2, |
| 36 | + info={"model_version": i, "use_count": 0}, |
| 37 | + ) |
| 38 | + for j in range(self.exp_write_batch_size) |
| 39 | + ] |
| 40 | + for i in range(self.num_steps) |
| 41 | + ] |
| 42 | + |
| 43 | + def _default_steps(self): |
| 44 | + return [0, 5, 10, 15] |
| 45 | + |
| 46 | + def _init_buffer_writer_and_sample_strategy(self): |
| 47 | + # Initialize buffer writer and sample strategy |
| 48 | + self.buffer_writer = get_buffer_writer( |
| 49 | + self.config.buffer.trainer_input.experience_buffer, # type: ignore [arg-type] |
| 50 | + ) |
| 51 | + self.sample_strategy: SampleStrategy = SAMPLE_STRATEGY.get( |
| 52 | + self.config.algorithm.sample_strategy |
| 53 | + )( |
| 54 | + buffer_config=self.config.buffer, |
| 55 | + **self.config.algorithm.sample_strategy_args, |
| 56 | + ) |
| 57 | + |
| 58 | + async def _verify_model_version(self, step, expected_versions): |
| 59 | + batch, metrics, _ = await self.sample_strategy.sample(step=step) |
| 60 | + self.assertEqual( |
| 61 | + batch.rewards.tolist(), expected_versions, f"Model versions mismatch at step {step}" |
| 62 | + ) |
| 63 | + self.assertEqual( |
| 64 | + metrics["sample/model_version/min"], |
| 65 | + min(expected_versions), |
| 66 | + f"Min model version mismatch at step {step}", |
| 67 | + ) |
| 68 | + self.assertEqual( |
| 69 | + metrics["sample/model_version/max"], |
| 70 | + max(expected_versions), |
| 71 | + f"Max model version mismatch at step {step}", |
| 72 | + ) |
| 73 | + self.assertEqual( |
| 74 | + metrics["sample/model_version/mean"], |
| 75 | + sum(expected_versions) / len(expected_versions), |
| 76 | + f"Mean model version mismatch at step {step}", |
| 77 | + ) |
| 78 | + |
| 79 | + async def _verify_sampling_model_versions(self, exps_list, expected_model_versions_map): |
| 80 | + self._init_buffer_writer_and_sample_strategy() |
| 81 | + |
| 82 | + # Write experiences to buffer, while sample and validate model versions |
| 83 | + current_task = None |
| 84 | + for step, exps in enumerate(exps_list): |
| 85 | + await self.buffer_writer.write_async(exps) |
| 86 | + if step in expected_model_versions_map: |
| 87 | + if current_task: |
| 88 | + await current_task |
| 89 | + current_task = asyncio.create_task( |
| 90 | + self._verify_model_version(step, expected_model_versions_map[step]) |
| 91 | + ) |
| 92 | + await asyncio.sleep(0.1) |
| 93 | + |
| 94 | + if current_task: |
| 95 | + await current_task |
| 96 | + |
| 97 | + async def _flexible_verify_model_version(self, step, max_staleness): |
| 98 | + _, metrics, _ = await self.sample_strategy.sample(step=step) |
| 99 | + self.assertGreaterEqual( |
| 100 | + metrics["sample/model_version/min"], |
| 101 | + step - max_staleness, |
| 102 | + f"Min model version mismatch at step {step}", |
| 103 | + ) |
| 104 | + |
| 105 | + async def _flexible_verify_sampling_model_versions(self, exps_list, check_steps, max_staleness): |
| 106 | + self._init_buffer_writer_and_sample_strategy() |
| 107 | + |
| 108 | + # Write experiences to buffer, while sample and validate model versions |
| 109 | + current_task = None |
| 110 | + for step, exps in enumerate(exps_list): |
| 111 | + await self.buffer_writer.write_async(exps) |
| 112 | + if step in check_steps: |
| 113 | + if current_task: |
| 114 | + await current_task |
| 115 | + current_task = asyncio.create_task( |
| 116 | + self._flexible_verify_model_version(step, max_staleness) |
| 117 | + ) |
| 118 | + await asyncio.sleep(0.1) |
| 119 | + |
| 120 | + if current_task: |
| 121 | + await current_task |
| 122 | + |
| 123 | + async def test_default_queue_default_sample_strategy(self): |
| 124 | + self.config.buffer.trainer_input.experience_buffer = ExperienceBufferConfig( |
| 125 | + name="default_queue_default_strategy", |
| 126 | + storage_type=StorageType.QUEUE.value, |
| 127 | + replay_buffer=ReplayBufferConfig(enable=False), |
| 128 | + ) |
| 129 | + self.config.check_and_update() |
| 130 | + |
| 131 | + # init testing data |
| 132 | + exps_list = self._default_exp_list() |
| 133 | + steps = self._default_steps() |
| 134 | + train_batch_size = self.config.buffer.train_batch_size |
| 135 | + expected_model_versions_map = {} |
| 136 | + for idx, step in enumerate(steps): |
| 137 | + start_idx = idx * train_batch_size |
| 138 | + batch_versions = [ |
| 139 | + (start_idx + offset) // self.exp_write_batch_size |
| 140 | + for offset in range(train_batch_size) |
| 141 | + ] |
| 142 | + expected_model_versions_map[step] = batch_versions |
| 143 | + |
| 144 | + await self._verify_sampling_model_versions(exps_list, expected_model_versions_map) |
| 145 | + |
| 146 | + async def test_default_queue_staleness_control_sample_strategy(self): |
| 147 | + max_staleness = 3 |
| 148 | + self.config.algorithm.sample_strategy = "staleness_control" |
| 149 | + self.config.algorithm.sample_strategy_args = {"max_staleness": max_staleness} |
| 150 | + self.config.buffer.trainer_input.experience_buffer = ExperienceBufferConfig( |
| 151 | + name="default_queue_staleness_control", |
| 152 | + storage_type=StorageType.QUEUE.value, |
| 153 | + replay_buffer=ReplayBufferConfig(enable=False), |
| 154 | + ) |
| 155 | + self.config.check_and_update() |
| 156 | + |
| 157 | + # init testing data |
| 158 | + exps_list = self._default_exp_list() |
| 159 | + steps = self._default_steps() |
| 160 | + expected_model_versions_map = {} |
| 161 | + for step in steps: |
| 162 | + predict_version = max(step - max_staleness, 0) |
| 163 | + expected_model_versions_map[step] = [ |
| 164 | + predict_version + i // self.exp_write_batch_size |
| 165 | + for i in range(self.config.buffer.train_batch_size) |
| 166 | + ] |
| 167 | + |
| 168 | + await self._verify_sampling_model_versions(exps_list, expected_model_versions_map) |
| 169 | + |
| 170 | + def _simulate_priority_queue(self, steps, max_staleness=float("inf")): |
| 171 | + expected_model_versions_map = {} |
| 172 | + buffer = deque() |
| 173 | + exp_pool = deque() |
| 174 | + step_idx = 0 |
| 175 | + train_batch_size = self.config.buffer.train_batch_size |
| 176 | + for i in range(self.num_steps): |
| 177 | + buffer.append([i] * self.exp_write_batch_size) |
| 178 | + step = steps[step_idx] |
| 179 | + if i < step: |
| 180 | + continue |
| 181 | + batch_versions = expected_model_versions_map.get(step, []) |
| 182 | + if len(batch_versions) < train_batch_size: |
| 183 | + while len(buffer) > 0: |
| 184 | + if len(exp_pool) == 0: |
| 185 | + exp_pool.extend(buffer.pop()) |
| 186 | + while len(exp_pool) > 0 and len(batch_versions) < train_batch_size: |
| 187 | + exp_version = exp_pool.popleft() |
| 188 | + if exp_version < step - max_staleness: |
| 189 | + continue |
| 190 | + batch_versions.append(exp_version) |
| 191 | + if len(batch_versions) >= train_batch_size: |
| 192 | + step_idx += 1 |
| 193 | + break |
| 194 | + expected_model_versions_map[step] = batch_versions |
| 195 | + if step_idx >= len(steps): |
| 196 | + break |
| 197 | + return expected_model_versions_map |
| 198 | + |
| 199 | + async def test_priority_queue_default_sample_strategy(self): |
| 200 | + self.config.buffer.trainer_input.experience_buffer = ExperienceBufferConfig( |
| 201 | + name="priority_queue_default_strategy", |
| 202 | + storage_type=StorageType.QUEUE.value, |
| 203 | + replay_buffer=ReplayBufferConfig(enable=True), |
| 204 | + ) |
| 205 | + self.config.check_and_update() |
| 206 | + |
| 207 | + # init testing data |
| 208 | + exps_list = self._default_exp_list() |
| 209 | + steps = self._default_steps() |
| 210 | + expected_model_versions_map = self._simulate_priority_queue(steps) |
| 211 | + |
| 212 | + await self._verify_sampling_model_versions(exps_list, expected_model_versions_map) |
| 213 | + |
| 214 | + async def test_priority_queue_staleness_control_sample_strategy(self): |
| 215 | + max_staleness = 2 |
| 216 | + self.config.algorithm.sample_strategy = "staleness_control" |
| 217 | + self.config.algorithm.sample_strategy_args = {"max_staleness": max_staleness} |
| 218 | + self.config.buffer.trainer_input.experience_buffer = ExperienceBufferConfig( |
| 219 | + name="priority_queue_staleness_control", |
| 220 | + storage_type=StorageType.QUEUE.value, |
| 221 | + replay_buffer=ReplayBufferConfig(enable=True), |
| 222 | + ) |
| 223 | + self.config.check_and_update() |
| 224 | + |
| 225 | + # init testing data |
| 226 | + exps_list = self._default_exp_list() |
| 227 | + steps = self._default_steps() |
| 228 | + expected_model_versions_map = self._simulate_priority_queue(steps, max_staleness) |
| 229 | + |
| 230 | + await self._verify_sampling_model_versions(exps_list, expected_model_versions_map) |
| 231 | + |
| 232 | + async def test_sql_staleness_control_sample_strategy(self): |
| 233 | + max_staleness = 2 |
| 234 | + self.config.algorithm.sample_strategy = "staleness_control" |
| 235 | + self.config.algorithm.sample_strategy_args = {"max_staleness": max_staleness} |
| 236 | + self.config.buffer.trainer_input.experience_buffer = ExperienceBufferConfig( |
| 237 | + name="sql_staleness_control", |
| 238 | + storage_type=StorageType.SQL.value, |
| 239 | + ) |
| 240 | + self.config.check_and_update() |
| 241 | + |
| 242 | + # init testing data |
| 243 | + exps_list = self._default_exp_list() |
| 244 | + steps = self._default_steps() |
| 245 | + |
| 246 | + await self._flexible_verify_sampling_model_versions(exps_list, steps, max_staleness) |
| 247 | + |
| 248 | + def tearDown(self): |
| 249 | + asyncio.run(self.buffer_writer.release()) |
| 250 | + shutil.rmtree(self.config.checkpoint_job_dir) |
| 251 | + return super().tearDown() |
0 commit comments