|
| 1 | +# Example Summary |
| 2 | + |
| 3 | +> From the Dataset Perspective |
| 4 | +
|
| 5 | +This guide provides an example list from the dataset perspective, where you can find out what datasets the examples have covered easily. |
| 6 | + |
| 7 | +| Dataset | Algorithm | Use Case | References | |
| 8 | +|--------------------------------------------------------------------------------------------------------------| --- |----------------------------------------------------------------------------------------| --- | |
| 9 | +| [openai/gsm8k](https://huggingface.co/datasets/openai/gsm8k) | GRPO | Regular RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_reasoning_basic.html) | |
| 10 | +| | GRPO | Asynchronous training | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/async_gsm8k), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_async_mode.html) | |
| 11 | +| | Multi-Step GRPO | AgentScope ReAct agent training | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/agentscope_react), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_react.html) | |
| 12 | +| | AsymRE | Regular RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/asymre_gsm8k) | |
| 13 | +| | CISPO | Regular RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/cispo_gsm8k) | |
| 14 | +| | GRPO | Training with prioritized tasks | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k_task_pipeline), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_data_functionalities.html#example-data-processor-for-task-pipeline) | |
| 15 | +| | GRPO | Training with reward reshaping on experiences | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k_experience_pipeline), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_data_functionalities.html#example-data-processor-for-experience-pipeline) | |
| 16 | +| | GRPO | Training with RULER (Relative Universal LLM-Elicited Rewards) | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k_ruler) | |
| 17 | +| | GRPO | Training a policy model as its own reward model | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k_trainable_ruler) | |
| 18 | +| | GRPO | Training using LoRA | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_lora_gsm8k) | |
| 19 | +| | OPMD | Off-policy RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/opmd_gsm8k), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_reasoning_advanced.html) | |
| 20 | +| | REC | Training with group-relative reinforce variants | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k) | |
| 21 | +| | sPPO | Training with sPPO algorithm | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sppo_gsm8k) | |
| 22 | +| | TOPR | Tapered off-policy RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/topr_gsm8k) | |
| 23 | +| Math category tasks | GRPO | Training with rewards from RM-Gallery | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_math) | |
| 24 | +| | AsymRE | Regular RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/asymre_math) | |
| 25 | +| | MIX | Training with "expert" data generated by a more advanced LLM | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_math), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_mix_algo.html) | |
| 26 | +| [ALFWorld](https://github.com/alfworld/alfworld) | GRPO | Concatenated multi-turn RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_alfworld), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_multi_turn.html) | |
| 27 | +| | Multi-Step GRPO | General multi-step RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_alfworld_general_multi_step), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_step_wise.html) | |
| 28 | +| [SciWorld](https://github.com/allenai/ScienceWorld) | GRPO | Concatenated multi-turn RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_sciworld) | |
| 29 | +| [WebShop](https://github.com/princeton-nlp/WebShop) | GRPO | Concatenated multi-turn RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_webshop), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_multi_turn.html) | |
| 30 | +| [callanwu/WebWalkerQA](https://huggingface.co/datasets/callanwu/WebWalkerQA) | Multi-Step GRPO | Multi-turn web search agent training | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/agentscope_websearch) | |
| 31 | +| [corbt/enron-emails](https://huggingface.co/datasets/corbt/enron-emails) | Multi-Step GRPO | Multi-turn email search agent training | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_email_search), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_search_email.html) | |
| 32 | +| [open-r1/DAPO-Math-17k-Processed](https://huggingface.co/datasets/open-r1/DAPO-Math-17k-Processed) | GRPO | Regular RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/dapo_math) | |
| 33 | +| [LLM360/guru-RL-92k](https://huggingface.co/datasets/LLM360/guru-RL-92k) | GRPO | Training with bayesian online task selection | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/bots) | |
| 34 | +| [Frozen Lake](https://gymnasium.farama.org/environments/toy_text/frozen_lake/) | GRPO | Concatenated multi-turn RFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_frozen_lake) | |
| 35 | +| [anisha2102/RaR-Medicine](https://huggingface.co/datasets/anisha2102/RaR-Medicine) | GRPO | Training with rewards from LLM judge and rubrics for a non-verifiable medicine QA task | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_rubric_as_reward) | |
| 36 | +| [Team-ACE/ToolACE](https://huggingface.co/datasets/Team-ACE/ToolACE) | GRPO | Regular RFT for tool calling | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_toolcall) | |
| 37 | +| [hiyouga/geometry3k](https://huggingface.co/datasets/hiyouga/geometry3k) | GRPO | Regular RFT for VLM | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_vlm) | |
| 38 | +| | MIX | Training with "expert" data generated by a more advanced LLM | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_vlm) | |
| 39 | +| [datajuicer/RealMedConv](https://huggingface.co/datasets/datajuicer/RealMedConv) | GRPO | Regular RFT for learning to ask in a proactive way | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/learn_to_ask) | |
| 40 | +| [datajuicer/Trinity-ToolAce-RL-split](https://huggingface.co/datasets/datajuicer/Trinity-ToolAce-RL-split) | CHORD | Training with dynamic SFT + RL integration | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord) | |
| 41 | +| [datajuicer/Trinity-ToolAce-SFT-split](https://huggingface.co/datasets/datajuicer/Trinity-ToolAce-SFT-split) | CHORD | Training with dynamic SFT + RL integration | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord) | |
| 42 | +| [Jiayi-Pan/Countdown-Tasks-3to4](https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4) | PPO | Training based on the critic model | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown) | |
| 43 | +| | PPO | Training with Megatron-LM as the backend. | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown_megatron) | |
| 44 | +| | PPO | Training with experience replay | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown_exp_replay) | |
| 45 | +| [open-r1/Mixture-of-Thoughts](https://huggingface.co/datasets/open-r1/Mixture-of-Thoughts) | SFT | Regular SFT | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sft_mot), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_dpo.html#configuration-for-sft) | |
| 46 | +| [HumanLLMs/Human-Like-DPO-Dataset](https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset) | DPO | Training based on prepared human preferences | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/dpo_humanlike), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_dpo.html) | |
| 47 | +| toy dataset | DPO | Training based on human-in-the-loop real-time preference annotation | [example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/dpo_human_in_the_loop), [doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_data_functionalities.html#example-human-in-the-loop) | |
0 commit comments