diff --git a/README.md b/README.md
index 793b87cdf8..ba04f8a239 100644
--- a/README.md
+++ b/README.md
@@ -39,6 +39,31 @@ Trinity-RFT provides functionalities for users with different backgrounds and ob
* 📊 **Data engineers:** Create RFT datasets and build data pipelines for cleaning, augmentation, and human-in-the-loop scenarios [[tutorial]](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/develop_operator.html)
+
+## 🚀 News
+
+* [2025-12] Trinity-RFT powers the medical and health business of "Taobao Shangou", enabling the AI agent to understand vague symptoms, proactively ask follow-up questions, and provide precise recommendations ([News](https://tech.china.com.cn/sx/20251201/411376.shtml)).
+* [2025-11] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.3)] Trinity-RFT v0.3.3 released: bug fixes.
+* [2025-11] Introducing [Learn-to-Ask](https://github.com/modelscope/Trinity-RFT/tree/main/examples/learn_to_ask): a framework for training proactive dialogue agents from offline expert data ([paper](https://arxiv.org/pdf/2510.25441)).
+* [2025-11] Introducing [BOTS](https://github.com/modelscope/Trinity-RFT/tree/main/examples/bots): online RL task selection for efficient LLM fine-tuning ([paper](https://arxiv.org/pdf/2510.26374)).
+* [2025-09] [Our paper](https://arxiv.org/pdf/2509.24203) reveals a novel off-policy interpretation for group-relative REINFORCE and its variants like GRPO and AsymRE ([implementation](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k)).
+* [2025-08] Introducing [CHORD](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord): dynamic SFT + RL integration for advanced LLM fine-tuning ([paper](https://arxiv.org/pdf/2508.11408)).
+
+ More...
+
+ - [2025-11] Trinity-RFT v0.3.2 released: bug fixes and advanced task selection & scheduling.
+ - [2025-10] Trinity-RFT v0.3.1 released: multi-stage training support, improved agentic RL examples, LoRA support, debug mode and new RL algorithms.
+ - [2025-09] Trinity-RFT v0.3.0 released: enhanced Buffer, FSDP2 & Megatron support, multi-modal models, and new RL algorithms/examples.
+ - [2025-08] Trinity-RFT v0.2.1 released.
+ - [2025-07] Trinity-RFT v0.2.0 released.
+ - [2025-07] Technical report (arXiv v2) updated with new features, examples, and experiments: [link](https://arxiv.org/abs/2505.17826).
+ - [2025-06] Trinity-RFT v0.1.1 released.
+ - [2025-05] Trinity-RFT v0.1.0 released, plus [technical report](https://arxiv.org/abs/2505.17826).
+ - [2025-04] Trinity-RFT open sourced.
+
+
+
+
## 🔨 Tutorials and Guidelines
@@ -86,21 +111,25 @@ Trinity-RFT provides functionalities for users with different backgrounds and ob
-## 🚀 News
+## 🔧 Supported Algorithms
+
+We list some algorithms supported by Trinity-RFT in the following table. For more details, the concrete configurations are shown in the [Algorithm module](https://github.com/modelscope/Trinity-RFT/blob/main/trinity/algorithm/algorithm.py). You can also set up new algorithms by customizing different components, see [tutorial](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/develop_algorithm.html).
+
+| Algorithm | Doc / Example | Source Code | Key Configurations |
+|:-----------|:-----------|:---------------|:-----------|
+| PPO [[Paper](https://arxiv.org/pdf/1707.06347)] | [[Doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_reasoning_basic.html)] [[Countdown Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/ppo_policy_loss.py)] | `algorithm_type: ppo` |
+| GRPO [[Paper](https://arxiv.org/pdf/2402.03300)] | [[Doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_reasoning_basic.html)] [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k)]| [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/grpo_advantage.py)] | `algorithm_type: grpo` |
+| CHORD 💡 [[Paper](https://arxiv.org/pdf/2508.11408)] | [[Doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_mix_algo.html)] [[ToolACE Example](https://github.com/modelscope/Trinity-RFT/blob/main/examples/mix_chord/mix_chord_toolace.yaml)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/chord_policy_loss.py)] | `algorithm_type: mix_chord` |
+| REC Series 💡 [[Paper](https://arxiv.org/pdf/2509.24203)] | [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/rec_policy_loss.py)] | `algorithm_type: rec` |
+| RLOO [[Paper](https://arxiv.org/pdf/2402.14740)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/rloo_advantage.py)] | `algorithm_type: rloo` |
+| REINFORCE++ [[Paper](https://arxiv.org/pdf/2501.03262)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/reinforce_advantage.py)] | `algorithm_type: reinforceplusplus` |
+| GSPO [[Paper](https://arxiv.org/pdf/2507.18071)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/gspo_policy_loss.py)] | `algorithm_type: gspo` |
+| TOPR [[Paper](https://arxiv.org/pdf/2503.14286)] | [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/topr_gsm8k)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/topr_policy_loss.py)] | `algorithm_type: topr` |
+| sPPO [[Paper](https://arxiv.org/pdf/2108.05828)] | [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sppo_gsm8k)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sppo_loss_fn.py)] | `algorithm_type: sppo` |
+| AsymRE [[Paper](https://arxiv.org/pdf/2506.20520)] | [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/asymre_gsm8k)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/asymre_advantage.py)] | `algorithm_type: asymre` |
+| CISPO [[Paper](https://arxiv.org/pdf/2506.13585)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/cispo_policy_loss.py)] | `algorithm_type: cispo` |
+| SAPO [[Paper](https://arxiv.org/pdf/2511.20347)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sapo_policy_loss.py)] | `algorithm_type: sapo` |
-* [2025-11] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.3)] Trinity-RFT v0.3.3 released: bug fixes.
-* [2025-11] Introducing [Learn-to-Ask](https://github.com/modelscope/Trinity-RFT/tree/main/examples/learn_to_ask): a framework for training proactive dialogue agents from offline expert data ([paper](https://arxiv.org/pdf/2510.25441)).
-* [2025-11] Introducing [BOTS](https://github.com/modelscope/Trinity-RFT/tree/main/examples/bots): online RL task selection for efficient LLM fine-tuning ([paper](https://arxiv.org/pdf/2510.26374)).
-* [2025-11] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.2)] Trinity-RFT v0.3.2 released: bug fixes and advanced task selection & scheduling.
-* [2025-10] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.1)] Trinity-RFT v0.3.1 released: multi-stage training support, improved agentic RL examples, LoRA support, debug mode and new RL algorithms.
-* [2025-09] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.0)] Trinity-RFT v0.3.0 released: enhanced Buffer, FSDP2 & Megatron support, multi-modal models, and new RL algorithms/examples.
-* [2025-08] Introducing [CHORD](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord): dynamic SFT + RL integration for advanced LLM fine-tuning ([paper](https://arxiv.org/pdf/2508.11408)).
-* [2025-08] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.2.1)] Trinity-RFT v0.2.1 released.
-* [2025-07] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.2.0)] Trinity-RFT v0.2.0 released.
-* [2025-07] Technical report (arXiv v2) updated with new features, examples, and experiments: [link](https://arxiv.org/abs/2505.17826).
-* [2025-06] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.1.1)] Trinity-RFT v0.1.1 released.
-* [2025-05] [[Release Notes](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.1.0)] Trinity-RFT v0.1.0 released, plus [technical report](https://arxiv.org/abs/2505.17826).
-* [2025-04] Trinity-RFT open sourced.
---
diff --git a/README_zh.md b/README_zh.md
index 423e76e103..02ca29c744 100644
--- a/README_zh.md
+++ b/README_zh.md
@@ -39,6 +39,31 @@ Trinity-RFT 面向不同背景和目标的用户提供相应功能:
+## 🚀 新闻
+
+* [2025-12] Trinity-RFT 助力淘宝闪购医药健康业务,让 AI 智能体能够理解模糊症状、主动询问后续问题,并提供精准推荐([新闻](https://tech.china.com.cn/sx/20251201/411376.shtml))。
+* [2025-11] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.3)] Trinity-RFT v0.3.3 发布:修复若干 Bug。
+* [2025-11] 推出 [Learn-to-Ask](https://github.com/modelscope/Trinity-RFT/tree/main/examples/learn_to_ask):利用离线专家数据,训练具备主动问询能力的对话智能体([论文](https://arxiv.org/pdf/2510.25441)).
+* [2025-11] 推出 [BOTS](https://github.com/modelscope/Trinity-RFT/tree/main/examples/bots):在线 RL 任务选择,实现高效 LLM 微调([论文](https://arxiv.org/pdf/2510.26374))。
+* [2025-09] 我们的 [论文](https://arxiv.org/pdf/2509.24203) 揭示了 group-relative REINFORCE 及其变种(如 GRPO 和 AsymRE)的 off-policy 解释([代码](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k))。
+* [2025-08] 推出 [CHORD](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord):动态 SFT + RL 集成,实现进阶 LLM 微调([论文](https://arxiv.org/pdf/2508.11408))。
+
+ More...
+
+ - [2025-11] Trinity-RFT v0.3.2 发布:修复若干 Bug 并支持进阶的任务选择和调度。
+ - [2025-10] Trinity-RFT v0.3.1 发布:多阶段训练支持、改进的智能体 RL 示例、LoRA 支持、调试模式和全新 RL 算法。
+ - [2025-09] Trinity-RFT v0.3.0 发布:增强的 Buffer、FSDP2 & Megatron 支持,多模态模型,以及全新 RL 算法/示例。
+ - [2025-08] Trinity-RFT v0.2.1 发布。
+ - [2025-07] Trinity-RFT v0.2.0 发布。
+ - [2025-07] 技术报告(arXiv v2)更新,包含新功能、示例和实验:[链接](https://arxiv.org/abs/2505.17826)。
+ - [2025-06] Trinity-RFT v0.1.1 发布。
+ - [2025-05] Trinity-RFT v0.1.0 发布,同时发布 [技术报告](https://arxiv.org/abs/2505.17826)。
+ - [2025-04] Trinity-RFT 开源。
+
+
+
+
+
## 🔨 教程与指南
@@ -85,22 +110,26 @@ Trinity-RFT 面向不同背景和目标的用户提供相应功能:
+## 🔨 算法支持
+
+下表列出了 Trinity-RFT 支持的算法,更多算法请参考 [算法模块](https://github.com/modelscope/Trinity-RFT/blob/main/trinity/algorithm/algorithm.py)。您也可以通过自定义不同的模块来构建新算法,参见 [教程](https://modelscope.github.io/Trinity-RFT/zh/main/tutorial/develop_algorithm.html)。
+
+| 算法 | 文档/示例 | 核心代码 | 关键配置 |
+|:-----------|:-----------|:---------------|:-----------|
+| PPO [[论文](https://arxiv.org/pdf/1707.06347)] | [[文档](https://modelscope.github.io/Trinity-RFT/zh/main/tutorial/example_reasoning_basic.html)] [[Countdown 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/ppo_policy_loss.py)] | `algorithm_type: ppo` |
+| GRPO [[论文](https://arxiv.org/pdf/2402.03300)] | [[文档](https://modelscope.github.io/Trinity-RFT/zh/main/tutorial/example_reasoning_basic.html)] [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k)]| [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/grpo_advantage.py)] | `algorithm_type: grpo` |
+| CHORD 💡 [[论文](https://arxiv.org/pdf/2508.11408)] | [[文档](https://modelscope.github.io/Trinity-RFT/zh/main/tutorial/example_mix_algo.html)] [[ToolACE 例子](https://github.com/modelscope/Trinity-RFT/blob/main/examples/mix_chord/mix_chord_toolace.yaml)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/chord_policy_loss.py)] | `algorithm_type: mix_chord` |
+| REC Series 💡 [[论文](https://arxiv.org/pdf/2509.24203)] | [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/rec_policy_loss.py)] | `algorithm_type: rec` |
+| RLOO [[论文](https://arxiv.org/pdf/2402.14740)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/rloo_advantage.py)] | `algorithm_type: rloo` |
+| REINFORCE++ [[论文](https://arxiv.org/pdf/2501.03262)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/reinforce_advantage.py)] | `algorithm_type: reinforceplusplus` |
+| GSPO [[论文](https://arxiv.org/pdf/2507.18071)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/gspo_policy_loss.py)] | `algorithm_type: gspo` |
+| TOPR [[论文](https://arxiv.org/pdf/2503.14286)] | [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/topr_gsm8k)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/topr_policy_loss.py)] | `algorithm_type: topr` |
+| sPPO [[论文](https://arxiv.org/pdf/2108.05828)] | [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sppo_gsm8k)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sppo_loss_fn.py)] | `algorithm_type: sppo` |
+| AsymRE [[论文](https://arxiv.org/pdf/2506.20520)] | [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/asymre_gsm8k)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/asymre_advantage.py)] | `algorithm_type: asymre` |
+| CISPO [[论文](https://arxiv.org/pdf/2506.13585)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/cispo_policy_loss.py)] | `algorithm_type: cispo` |
+| SAPO [[论文](https://arxiv.org/pdf/2511.20347)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sapo_policy_loss.py)] | `algorithm_type: sapo` |
-## 🚀 新闻
-* [2025-11] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.3)] Trinity-RFT v0.3.3 发布:修复若干 Bug。
-* [2025-11] 推出 [Learn-to-Ask](https://github.com/modelscope/Trinity-RFT/tree/main/examples/learn_to_ask):利用离线专家数据,训练具备主动问询能力的对话智能体([论文](https://arxiv.org/pdf/2510.25441)).
-* [2025-11] 推出 [BOTS](https://github.com/modelscope/Trinity-RFT/tree/main/examples/bots):在线 RL 任务选择,实现高效 LLM 微调([论文](https://arxiv.org/pdf/2510.26374))。
-* [2025-11] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.2)] Trinity-RFT v0.3.2 发布:修复若干 Bug 并支持进阶的任务选择和调度。
-* [2025-10] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.1)] Trinity-RFT v0.3.1 发布:多阶段训练支持、改进的智能体 RL 示例、LoRA 支持、调试模式和全新 RL 算法。
-* [2025-09] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.3.0)] Trinity-RFT v0.3.0 发布:增强的 Buffer、FSDP2 & Megatron 支持,多模态模型,以及全新 RL 算法/示例。
-* [2025-08] 推出 [CHORD](https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord):动态 SFT + RL 集成,实现进阶 LLM 微调([论文](https://arxiv.org/pdf/2508.11408))。
-* [2025-08] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.2.1)] Trinity-RFT v0.2.1 发布。
-* [2025-07] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.2.0)] Trinity-RFT v0.2.0 发布。
-* [2025-07] 技术报告(arXiv v2)更新,包含新功能、示例和实验:[链接](https://arxiv.org/abs/2505.17826)。
-* [2025-06] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.1.1)] Trinity-RFT v0.1.1 发布。
-* [2025-05] [[发布说明](https://github.com/modelscope/Trinity-RFT/releases/tag/v0.1.0)] Trinity-RFT v0.1.0 发布,同时发布 [技术报告](https://arxiv.org/abs/2505.17826)。
-* [2025-04] Trinity-RFT 开源。
---
diff --git a/docs/sphinx_doc/source/main.md b/docs/sphinx_doc/source/main.md
index 429a6d2c4c..65ff0af09d 100644
--- a/docs/sphinx_doc/source/main.md
+++ b/docs/sphinx_doc/source/main.md
@@ -66,6 +66,27 @@ Trinity-RFT provides functionalities for users with different backgrounds and ob
+## 🔧 Supported Algorithms
+
+We list some algorithms supported by Trinity-RFT in the following table. For more details, the concrete configurations are shown in the [Algorithm module](https://github.com/modelscope/Trinity-RFT/blob/main/trinity/algorithm/algorithm.py). You can also set up new algorithms by customizing different components, see [tutorial](/tutorial/develop_algorithm.md).
+
+| Algorithm | Doc / Example | Source Code | Key Configurations |
+|:-----------|:-----------|:---------------|:-----------|
+| PPO [[Paper](https://arxiv.org/pdf/1707.06347)] | [[Doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_reasoning_basic.html)] [[Countdown Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/ppo_policy_loss.py)] | `algorithm_type: ppo` |
+| GRPO [[Paper](https://arxiv.org/pdf/2402.03300)] | [[Doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_reasoning_basic.html)] [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k)]| [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/grpo_advantage.py)] | `algorithm_type: grpo` |
+| CHORD 💡 [[Paper](https://arxiv.org/pdf/2508.11408)] | [[Doc](https://modelscope.github.io/Trinity-RFT/en/main/tutorial/example_mix_algo.html)] [[ToolACE Example](https://github.com/modelscope/Trinity-RFT/blob/main/examples/mix_chord/mix_chord_toolace.yaml)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/chord_policy_loss.py)] | `algorithm_type: mix_chord` |
+| REC Series 💡 [[Paper](https://arxiv.org/pdf/2509.24203)] | [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/rec_policy_loss.py)] | `algorithm_type: rec` |
+| RLOO [[Paper](https://arxiv.org/pdf/2402.14740)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/rloo_advantage.py)] | `algorithm_type: rloo` |
+| REINFORCE++ [[Paper](https://arxiv.org/pdf/2501.03262)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/reinforce_advantage.py)] | `algorithm_type: reinforceplusplus` |
+| GSPO [[Paper](https://arxiv.org/pdf/2507.18071)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/gspo_policy_loss.py)] | `algorithm_type: gspo` |
+| TOPR [[Paper](https://arxiv.org/pdf/2503.14286)] | [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/topr_gsm8k)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/topr_policy_loss.py)] | `algorithm_type: topr` |
+| sPPO [[Paper](https://arxiv.org/pdf/2108.05828)] | [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sppo_gsm8k)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sppo_loss_fn.py)] | `algorithm_type: sppo` |
+| AsymRE [[Paper](https://arxiv.org/pdf/2506.20520)] | [[GSM8K Example](https://github.com/modelscope/Trinity-RFT/tree/main/examples/asymre_gsm8k)] | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/asymre_advantage.py)] | `algorithm_type: asymre` |
+| CISPO [[Paper](https://arxiv.org/pdf/2506.13585)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/cispo_policy_loss.py)] | `algorithm_type: cispo` |
+| SAPO [[Paper](https://arxiv.org/pdf/2511.20347)] | - | [[Code](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sapo_policy_loss.py)] | `algorithm_type: sapo` |
+
+
+
## Acknowledgements
This project is built upon many excellent open-source projects, including:
diff --git a/docs/sphinx_doc/source_zh/main.md b/docs/sphinx_doc/source_zh/main.md
index 99d89a1ad2..e215f17b35 100644
--- a/docs/sphinx_doc/source_zh/main.md
+++ b/docs/sphinx_doc/source_zh/main.md
@@ -64,6 +64,27 @@ Trinity-RFT 面向不同背景和目标的用户提供相应功能:
+## 🔨 算法支持
+
+下表列出了 Trinity-RFT 支持的算法,更多算法请参考 [算法模块](https://github.com/modelscope/Trinity-RFT/blob/main/trinity/algorithm/algorithm.py)。您也可以通过自定义不同的模块来构建新算法,参见 [教程](/tutorial/develop_algorithm.md)。
+
+| 算法 | 文档/示例 | 核心代码 | 关键配置 |
+|:-----------|:-----------|:---------------|:-----------|
+| PPO [[论文](https://arxiv.org/pdf/1707.06347)] | [[文档](https://modelscope.github.io/Trinity-RFT/zh/main/tutorial/example_reasoning_basic.html)] [[Countdown 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/ppo_countdown)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/ppo_policy_loss.py)] | `algorithm_type: ppo` |
+| GRPO [[论文](https://arxiv.org/pdf/2402.03300)] | [[文档](https://modelscope.github.io/Trinity-RFT/zh/main/tutorial/example_reasoning_basic.html)] [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/grpo_gsm8k)]| [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/grpo_advantage.py)] | `algorithm_type: grpo` |
+| CHORD 💡 [[论文](https://arxiv.org/pdf/2508.11408)] | [[文档](https://modelscope.github.io/Trinity-RFT/zh/main/tutorial/example_mix_algo.html)] [[ToolACE 例子](https://github.com/modelscope/Trinity-RFT/blob/main/examples/mix_chord/mix_chord_toolace.yaml)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/chord_policy_loss.py)] | `algorithm_type: mix_chord` |
+| REC Series 💡 [[论文](https://arxiv.org/pdf/2509.24203)] | [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/rec_policy_loss.py)] | `algorithm_type: rec` |
+| RLOO [[论文](https://arxiv.org/pdf/2402.14740)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/rloo_advantage.py)] | `algorithm_type: rloo` |
+| REINFORCE++ [[论文](https://arxiv.org/pdf/2501.03262)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/reinforce_advantage.py)] | `algorithm_type: reinforceplusplus` |
+| GSPO [[论文](https://arxiv.org/pdf/2507.18071)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/gspo_policy_loss.py)] | `algorithm_type: gspo` |
+| TOPR [[论文](https://arxiv.org/pdf/2503.14286)] | [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/topr_gsm8k)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/topr_policy_loss.py)] | `algorithm_type: topr` |
+| sPPO [[论文](https://arxiv.org/pdf/2108.05828)] | [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/sppo_gsm8k)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sppo_loss_fn.py)] | `algorithm_type: sppo` |
+| AsymRE [[论文](https://arxiv.org/pdf/2506.20520)] | [[GSM8K 例子](https://github.com/modelscope/Trinity-RFT/tree/main/examples/asymre_gsm8k)] | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/advantage_fn/asymre_advantage.py)] | `algorithm_type: asymre` |
+| CISPO [[论文](https://arxiv.org/pdf/2506.13585)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/cispo_policy_loss.py)] | `algorithm_type: cispo` |
+| SAPO [[论文](https://arxiv.org/pdf/2511.20347)] | - | [[代码](https://github.com/modelscope/Trinity-RFT/tree/main/trinity/algorithm/policy_loss_fn/sapo_policy_loss.py)] | `algorithm_type: sapo` |
+
+
+
## 致谢
diff --git a/trinity/algorithm/algorithm.py b/trinity/algorithm/algorithm.py
index 397336408d..93f76676f8 100644
--- a/trinity/algorithm/algorithm.py
+++ b/trinity/algorithm/algorithm.py
@@ -114,6 +114,52 @@ def default_config(cls) -> Dict:
}
+@ALGORITHM_TYPE.register_module("reinforceplusplus")
+class ReinforcePlusPlusAlgorithm(AlgorithmType):
+ """Reinforce++ algorithm."""
+
+ use_critic: bool = False
+ use_reference: bool = True
+ compute_advantage_in_trainer: bool = True
+ can_balance_batch: bool = True
+ schema: str = "experience"
+
+ @classmethod
+ def default_config(cls) -> Dict:
+ return {
+ "repeat_times": 2,
+ "advantage_fn": "reinforceplusplus",
+ "sample_strategy": "default",
+ "policy_loss_fn": "ppo",
+ "kl_penalty_fn": "none",
+ "kl_loss_fn": "k2",
+ "entropy_loss_fn": "default",
+ }
+
+
+@ALGORITHM_TYPE.register_module("rloo")
+class RLOOAlgorithm(AlgorithmType):
+ """RLOO algorithm."""
+
+ use_critic: bool = False
+ use_reference: bool = True
+ compute_advantage_in_trainer: bool = True
+ can_balance_batch: bool = True
+ schema: str = "experience"
+
+ @classmethod
+ def default_config(cls) -> Dict:
+ return {
+ "repeat_times": 2,
+ "advantage_fn": "rloo",
+ "sample_strategy": "default",
+ "policy_loss_fn": "ppo",
+ "kl_penalty_fn": "none",
+ "kl_loss_fn": "k2",
+ "entropy_loss_fn": "default",
+ }
+
+
@ALGORITHM_TYPE.register_module("opmd")
class OPMDAlgorithm(AlgorithmType):
"""OPMD algorithm."""
@@ -250,6 +296,29 @@ def default_config(cls) -> Dict:
}
+@ALGORITHM_TYPE.register_module("gspo")
+class GSPOAlgorithm(AlgorithmType):
+ """GSPO algorithm. See https://arxiv.org/pdf/2507.18071"""
+
+ use_critic: bool = False
+ use_reference: bool = True
+ compute_advantage_in_trainer: bool = False
+ can_balance_batch: bool = True
+ schema: str = "experience"
+
+ @classmethod
+ def default_config(cls) -> Dict:
+ return {
+ "repeat_times": 2,
+ "advantage_fn": "grpo",
+ "sample_strategy": "default",
+ "policy_loss_fn": "gspo",
+ "kl_penalty_fn": "none",
+ "kl_loss_fn": "k2",
+ "entropy_loss_fn": "default",
+ }
+
+
@ALGORITHM_TYPE.register_module("sapo")
class SAPOAlgorithm(AlgorithmType):
"""SAPO (Soft Adaptive Policy Optimization) algorithm.