|
23 | 23 | 4. chatglm2 series: [chatglm2-6b](https://modelscope.cn/models/ZhipuAI/chatglm2-6b/summary), chatglm2-6b-32k |
24 | 24 | 5. llama series: llama2-7b, llama2-7b-chat, llama2-13b, llama2-13b-chat, llama2-70b, [llama2-70b-chat](https://modelscope.cn/models/modelscope/Llama-2-70b-chat-ms/summary) |
25 | 25 | 6. openbuddy-llama series: openbuddy-llama2-13b, openbuddy-llama-65b, [openbuddy-llama2-70b](https://modelscope.cn/models/OpenBuddy/openbuddy-llama2-70b-v10.1-bf16/summary) |
26 | | - 7. internlm series: internlm-7b, internlm-7b-chat, internlm-7b-chat-8k, [internlm-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm-20b/summary), [internlm-20b-chat](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm-20b-chat/summary) |
| 26 | + 7. internlm series: internlm-7b, internlm-7b-chat, internlm-7b-chat-8k, [internlm-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm-20b/summary), [internlm-20b-chat](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm-chat-20b/summary) |
27 | 27 | 8. other: [polylm-13b](https://modelscope.cn/models/damo/nlp_polylm_13b_text_generation/summary), [seqgpt-560m](https://modelscope.cn/models/damo/nlp_seqgpt-560m/summary) |
28 | 28 | 3. supported features: quantization, DDP, model parallelism(device map), gradient checkpointing, gradient accumulation, pushing to modelscope hub, custom datasets, multimodal and agent SFT, mutli-round chat, ... |
29 | 29 | 4. supported datasets: |
@@ -87,7 +87,7 @@ bash scripts/qwen_7b_chat/lora_ddp/infer.sh |
87 | 87 | bash scripts/qwen_7b_chat/lora_mp_ddp/sft.sh |
88 | 88 | bash scripts/qwen_7b_chat/lora_mp_ddp/infer.sh |
89 | 89 |
|
90 | | -# sft(qlora) and infer qwen-7b-chat, Requires 12GB GPU memory. |
| 90 | +# sft(qlora) and infer qwen-7b-chat, Requires 10GB GPU memory. |
91 | 91 | # If you want to use quantification, you need to `pip install bitsandbytes -U` |
92 | 92 | # Recommended experimental environment: V100, A10, 3090 |
93 | 93 | bash scripts/qwen_7b_chat/qlora/sft.sh |
|
0 commit comments