Skip to content

Commit 5e3d1e0

Browse files
authored
update Agent best practice with Modelscope-Agent (#676)
1 parent 1e9f8be commit 5e3d1e0

File tree

11 files changed

+251
-2
lines changed

11 files changed

+251
-2
lines changed

README.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,7 @@ To facilitate use by users unfamiliar with deep learning, we provide a Gradio we
3939
Additionally, we are expanding capabilities for other modalities. Currently, we support full-parameter training and LoRA training for AnimateDiff.
4040

4141
## 🎉 News
42+
- 2024.04.10: Use SWIFT to fine-tune the qwen-7b-chat model to enhance its function call capabilities, and combine it with [Modelscope-Agent](https://github.com/modelscope/modelscope-agent) for best practices, which can be found [here](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM/Agent-best-practice.md#Usage-with-Modelscope_Agent).
4243
- 🔥2024.04.09: Support ruozhiba dataset. Search `ruozhiba` in [this documentation](docs/source_en/LLM/Supported-models-datasets.md) to begin training!
4344
- 2024.04.08: Support the fine-tuning and inference of XVERSE-MoE-A4.2B model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/xverse_moe_a4_2b/lora/sft.sh) to start training!
4445
- 2024.04.04: Support **QLoRA+FSDP** to train a 70B model with two 24G memory GPUs, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/sft.sh) to train.
@@ -431,7 +432,7 @@ CUDA_VISIBLE_DEVICES=0 swift deploy \
431432
| Dataset Type | Training Task | Documentation |
432433
|--------------|:---------------|--------------------------------------------------------------- |
433434
| General | Fine-tuning | 🔥ruozhiba, 🔥ms-bench, 🔥ms-bench-mini, 🔥alpaca-en(gpt4), 🔥alpaca-zh(gpt4), multi-alpaca-all, instinwild-en, instinwild-zh, cot-en, cot-zh, firefly-all-zh, instruct-en, gpt4all-en, sharegpt-en, sharegpt-zh, tulu-v2-sft-mixture, wikipedia-zh, open-orca, open-orca-gpt4, sharegpt-gpt4, 🔥sharegpt-gpt4-mini. |
434-
| Agent | Fine-tuning | 🔥ms-agent, damo-mini-agent-zh, damo-agent-zh, agent-instruct-all-en. |
435+
| Agent | Fine-tuning | 🔥ms-agent, ms-agent-for-agentfabric-default, ms-agent-for-agentfabric-addition, damo-mini-agent-zh, damo-agent-zh, agent-instruct-all-en. |
435436
| General | Human Alignment | 🔥hh-rlhf-cn, stack-exchange-paired, hh-rlhf-harmless-base, hh-rlhf-helpful-base, hh-rlhf-helpful-online, hh-rlhf-helpful-rejection-sampled, hh-rlhf-red-team-attempts, hh-rlhf-cn-harmless-base-cn, hh-rlhf-cn-helpful-base-cn, hh-rlhf-cn-harmless-base-en, hh-rlhf-cn-helpful-base-en. |
436437
| Code | Fine-tuning | code-alpaca-en, 🔥leetcode-python-en, 🔥codefuse-python-en, 🔥codefuse-evol-instruction-zh. |
437438
| Medical | Fine-tuning | medical-en, medical-zh, medical-mini-zh, 🔥disc-med-sft-zh. |

README_CN.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,6 +40,7 @@ SWIFT支持近**200种LLM和MLLM**(多模态大模型)的训练、推理、
4040
此外,我们也在拓展其他模态的能力,目前我们支持了AnimateDiff的全参数训练和LoRA训练。
4141

4242
## 🎉 新闻
43+
- 2024.04.10: 使用swift微调qwen-7b-chat模型增强模型function call能力,并结合[Modelscope-Agent](https://github.com/modelscope/modelscope-agent)使用,最佳实践可以查看[这里](https://github.com/modelscope/swift/tree/main/docs/source/LLM/Agent微调最佳实践.md#搭配Modelscope-Agent使用)
4344
- 🔥2024.04.09: 支持`弱智吧`系列数据集. 在[支持的模型和数据集文档](docs/source/LLM/支持的模型和数据集.md)中搜索`ruozhiba`来找到数据集并开始训练!
4445
- 2024.04.08: 支持XVERSE-MoE-A4.2B模型的推理与微调, 使用[这个脚本](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/xverse_moe_a4_2b/lora/sft.sh)来开始训练!
4546
- 2024.04.04: 支持使用**QLoRA+FSDP**来使用两张24G显卡训练70B模型, 使用[这个脚本](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/sft.sh)开始训练.
@@ -430,7 +431,7 @@ CUDA_VISIBLE_DEVICES=0 swift deploy \
430431
| 数据集类型 | 训练任务 | 文档 |
431432
| ---------- | :------- | ------------------------------------------------------------ |
432433
| 通用 | 微调 | 🔥ruozhiba, 🔥ms-bench, 🔥ms-bench-mini, 🔥alpaca-en(gpt4), 🔥alpaca-zh(gpt4), multi-alpaca-all, instinwild-en, instinwild-zh, cot-en, cot-zh, firefly-all-zh, instruct-en, gpt4all-en, sharegpt-en, sharegpt-zh, tulu-v2-sft-mixture, wikipedia-zh, open-orca, open-orca-gpt4, sharegpt-gpt4, 🔥sharegpt-gpt4-mini. |
433-
| Agent | 微调 | 🔥ms-agent, damo-mini-agent-zh, damo-agent-zh, agent-instruct-all-en. |
434+
| Agent | 微调 | 🔥ms-agent, ms-agent-for-agentfabric-default, ms-agent-for-agentfabric-addition, damo-mini-agent-zh, damo-agent-zh, agent-instruct-all-en. |
434435
| 通用 | 人类对齐 | 🔥hh-rlhf-cn, stack-exchange-paired, hh-rlhf-harmless-base, hh-rlhf-helpful-base, hh-rlhf-helpful-online, hh-rlhf-helpful-rejection-sampled, hh-rlhf-red-team-attempts, hh-rlhf-cn-harmless-base-cn, hh-rlhf-cn-helpful-base-cn, hh-rlhf-cn-harmless-base-en, hh-rlhf-cn-helpful-base-en. |
435436
| 代码 | 微调 | code-alpaca-en, 🔥leetcode-python-en, 🔥codefuse-python-en, 🔥codefuse-evol-instruction-zh. |
436437
| 医疗 | 微调 | medical-en, medical-zh, medical-mini-zh, 🔥disc-med-sft-zh. |

docs/resources/agentfabric_1.png

48.5 KB
Loading

docs/resources/agentfabric_2.png

52.7 KB
Loading

docs/resources/agentfabric_3.png

45.1 KB
Loading

docs/resources/agentfabric_4.png

57.6 KB
Loading

docs/source/LLM/Agent微调最佳实践.md

Lines changed: 118 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,7 @@ SWIFT支持了开源模型,尤其是中小型模型(7B、14B等)对Agent
1111
- [微调](#微调)
1212
- [推理](#推理)
1313
- [总结](#总结)
14+
- [搭配Modelscope-Agent使用](#搭配Modelscope-Agent使用)
1415

1516
## 环境安装
1617

@@ -429,6 +430,123 @@ print()
429430
430431
431432
433+
## 搭配Modelscope-Agent使用
434+
结合[Modelscope-Agent](https://github.com/modelscope/modelscope-agent),微调模型用于搭建Agent
435+
436+
本节针对Modelscope-Agent中的交互式框架AgentFabric,微调小模型qwen-7b-chat使其具有function call能力
437+
438+
由于ms-agent中的system prompt与Modelscope-Agent中的system prompt格式不匹配,直接训练效果不佳,为此我们根据ms-agent转换格式得到新数据集[ms_agent_for_agentfabric](https://modelscope.cn/datasets/AI-ModelScope/ms_agent_for_agentfabric/summary),现已集成到SWIFT中。
439+
其中`ms-agent-for-agentfabric-default`包含3万条由ms-agent转换的数据集,`ms-agent-for-agentfabric-additional`包含488条由开源的AgentFabric框架实际调用访问数据筛选得到
440+
441+
442+
### 微调
443+
`dataset`换为`ms-agent-for-agentfabric``ms-agent-for-agentfabric-default`
444+
```shell
445+
# Experimental environment: 8GPU
446+
nproc_per_node=8
447+
448+
PYTHONPATH=../../.. \
449+
torchrun \
450+
--nproc_per_node=$nproc_per_node \
451+
--master_port 29500 \
452+
llm_sft.py \
453+
--model_id_or_path qwen/Qwen-7B-Chat \
454+
--model_revision master \
455+
--sft_type lora \
456+
--tuner_backend swift \
457+
--dtype AUTO \
458+
--output_dir output \
459+
--dataset ms-agent-for-agentfabric-default ms-agent-for-agentfabric-addition \
460+
--train_dataset_mix_ratio 2.0 \
461+
--train_dataset_sample -1 \
462+
--num_train_epochs 2 \
463+
--max_length 1500 \
464+
--check_dataset_strategy warning \
465+
--lora_rank 8 \
466+
--lora_alpha 32 \
467+
--lora_dropout_p 0.05 \
468+
--lora_target_modules ALL \
469+
--self_cognition_sample 3000 \
470+
--model_name 卡卡罗特 \
471+
--model_author 陶白白 \
472+
--gradient_checkpointing true \
473+
--batch_size 2 \
474+
--weight_decay 0.1 \
475+
--learning_rate 5e-5 \
476+
--gradient_accumulation_steps $(expr 32 / $nproc_per_node) \
477+
--max_grad_norm 0.5 \
478+
--warmup_ratio 0.03 \
479+
--eval_steps 100 \
480+
--save_steps 100 \
481+
--save_total_limit 2 \
482+
--logging_steps 10
483+
```
484+
485+
merge lora
486+
```
487+
CUDA_VISIBLE_DEVICES=0 swift export \
488+
--ckpt_dir '/path/to/qwen-7b-chat/vx-xxx/checkpoint-xxx' --merge_lora true
489+
```
490+
491+
### AgentFabric
492+
#### 环境安装
493+
```bash
494+
git clone https://github.com/modelscope/modelscope-agent.git
495+
cd modelscope-agent && pip install -r requirements.txt && pip install -r apps/agentfabric/requirements.txt
496+
```
497+
498+
#### 部署模型
499+
使用以下任意一种方式部署模型
500+
##### swift deploy
501+
```bash
502+
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir /path/to/qwen-7b-chat/vx-xxx/checkpoint-xxxx-merged
503+
```
504+
505+
##### vllm
506+
```bash
507+
python -m vllm.entrypoints.openai.api_server --model /path/to/qwen-7b-chat/vx-xxx/checkpoint-xxxx-merged --trust-remote-code
508+
```
509+
510+
#### 添加本地模型配置
511+
`/path/to/modelscope-agent/apps/agentfabric/config/model_config.json`中,新增合并后的本地模型
512+
```
513+
"my-qwen-7b-chat": {
514+
"type": "openai",
515+
"model": "/path/to/qwen-7b-chat/vx-xxx/checkpoint-xxxx-merged",
516+
"api_base": "http://localhost:8000/v1",
517+
"is_chat": true,
518+
"is_function_call": false,
519+
"support_stream": false
520+
}
521+
```
522+
注意,如果使用`swift deploy`部署,需要将`"model"`的值设为`qwen-7b-chat`
523+
524+
#### 启动AgentFabric
525+
在以下实践中,会调用[Wanx Image Generation](https://help.aliyun.com/zh/dashscope/opening-service?spm=a2c4g.11186623.0.0.50724937O7n40B)和[高德天气](https://lbs.amap.com/api/webservice/guide/create-project/get-key),需要手动设置API KEY, 设置后启动AgentFabric
526+
```bash
527+
export PYTHONPATH=$PYTHONPATH:/path/to/your/modelscope-agent
528+
export DASHSCOPE_API_KEY=your_api_key
529+
export AMAP_TOKEN=your_api_key
530+
cd modelscope-agent/apps/agentfabric
531+
python app.py
532+
```
533+
534+
进入AgentFabric后,在配置(Configure)的模型中选择本地模型`my-qwen-7b-chat`
535+
536+
内置能力选择agent可以调用的API, 这里选择`Wanx Image Generation``高德天气`
537+
538+
点击更新配置,等待配置完成后在右侧的输入栏中与Agent交互
539+
> 天气查询
540+
![agentfabric_1](../../resources/agentfabric_1.png)
541+
![agentfabric_2](../../resources/agentfabric_2.png)
542+
543+
> 文生图
544+
![agentfabric_3](../../resources/agentfabric_3.png)
545+
![agentfabric_4](../../resources/agentfabric_4.png)
546+
547+
可以看到微调后的模型可以正确理解指令并调用工具
548+
549+
432550
## 总结
433551
434552
通过SWIFT支持的Agent训练能力,我们使用ms-agent和ms-bench对qwen-7b-chat模型进行了微调。可以看到微调后模型保留了通用知识问答能力,并在system字段增加了API的情况下可以正确调用并完成任务。需要注意的是:

docs/source/LLM/支持的模型和数据集.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -243,6 +243,8 @@
243243
|sharegpt-gpt4|[AI-ModelScope/sharegpt_gpt4](https://modelscope.cn/datasets/AI-ModelScope/sharegpt_gpt4/summary)|103063|0|1286.2±2089.4, min=22, max=221080|chat, multilingual, general, multi-round|
244244
|🔥sharegpt-gpt4-mini|[AI-ModelScope/sharegpt_gpt4](https://modelscope.cn/datasets/AI-ModelScope/sharegpt_gpt4/summary)|6205|0|3511.6±6068.5, min=33, max=116018|chat, multilingual, general, multi-round, gpt4|
245245
|🔥ms-agent|[iic/ms_agent](https://modelscope.cn/datasets/iic/ms_agent/summary)|30000|0|647.7±217.1, min=199, max=2722|chat, agent, multi-round|
246+
|ms-agent-for-agentfabric-default|[AI-ModelScope/ms_agent_for_agentfabric](https://modelscope.cn/datasets/AI-ModelScope/ms_agent_for_agentfabric/summary)|30000|0|617.8±199.1, min=251, max=2657|chat, agent, multi-round|
247+
|ms-agent-for-agentfabric-addition|[AI-ModelScope/ms_agent_for_agentfabric](https://modelscope.cn/datasets/AI-ModelScope/ms_agent_for_agentfabric/summary)|488|0|2084.9±1514.8, min=489, max=7354|chat, agent, multi-round|
246248
|damo-agent-zh|[damo/MSAgent-Bench](https://modelscope.cn/datasets/damo/MSAgent-Bench/summary)|422115|161|965.7±440.9, min=321, max=31535|chat, agent, multi-round|
247249
|damo-agent-mini-zh|[damo/MSAgent-Bench](https://modelscope.cn/datasets/damo/MSAgent-Bench/summary)|39964|152|1230.9±350.1, min=558, max=4982|chat, agent, multi-round|
248250
|agent-instruct-all-en|[huangjintao/AgentInstruct_copy](https://modelscope.cn/datasets/huangjintao/AgentInstruct_copy/summary)|1866|0|1144.3±635.5, min=206, max=6412|chat, agent, multi-round|

docs/source_en/LLM/Agent-best-practice.md

Lines changed: 115 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@ SWIFT supports open-source models, especially small and medium-sized models (7B,
1010
- [Data Preparation](#Data-Preparation)
1111
- [Fine-tuning](#Fine-tuning)
1212
- [Inference](#Inference)
13+
- [Usage with Modelscope-Agent](#Usage-with-Modelscope_Agent)
1314
- [Summary](#Summary)
1415

1516
## Environment Setup
@@ -421,7 +422,121 @@ print()
421422
# response:
422423
# Final Answer: There is fire in the image at coordinates [101.1, 200.9]
423424
```
425+
## Usage-with-Modelscope_Agent
426+
In conjunction with Modelscope-Agent(https://github.com/modelscope/modelscope-agent), fine-tune models for building Agents.
424427
428+
This section focuses on the interactive framework AgentFabric within Modelscope-Agent to fine-tune the small model qwen-7b-chat to enable function call capabilities.
429+
430+
Due to the mismatch between the system prompt in ms-agent and that in Modelscope-Agent, direct training yields suboptimal results. To address this, we have created a new dataset [ms_agent_for_agentfabric](https://modelscope.cn/datasets/AI-ModelScope/ms_agent_for_agentfabric/summary) by converting the format from ms-agent, which is now integrated into SWIFT. The `ms-agent-for-agentfabric-default` includes 30,000 entries converted from ms-agent data, while `ms-agent-for-agentfabric-additional` contains 488 entries filtered from actual function call access data by the open-source AgentFabric framework.
431+
432+
### Fine-tuning
433+
Replace `dataset` with `ms-agent-for-agentfabric` and `ms-agent-for-agentfabric-default`:
434+
```shell
435+
# Experimental environment: 8GPU
436+
nproc_per_node=8
437+
438+
PYTHONPATH=../../.. \
439+
torchrun \
440+
--nproc_per_node=$nproc_per_node \
441+
--master_port 29500 \
442+
llm_sft.py \
443+
--model_id_or_path qwen/Qwen-7B-Chat \
444+
--model_revision master \
445+
--sft_type lora \
446+
--tuner_backend swift \
447+
--dtype AUTO \
448+
--output_dir output \
449+
--dataset ms-agent-for-agentfabric-default ms-agent-for-agentfabric-addition \
450+
--train_dataset_mix_ratio 2.0 \
451+
--train_dataset_sample -1 \
452+
--num_train_epochs 2 \
453+
--max_length 1500 \
454+
--check_dataset_strategy warning \
455+
--lora_rank 8 \
456+
--lora_alpha 32 \
457+
--lora_dropout_p 0.05 \
458+
--lora_target_modules ALL \
459+
--self_cognition_sample 3000 \
460+
--model_name 卡卡罗特 \
461+
--model_author 陶白白 \
462+
--gradient_checkpointing true \
463+
--batch_size 2 \
464+
--weight_decay 0.1 \
465+
--learning_rate 5e-5 \
466+
--gradient_accumulation_steps $(expr 32 / $nproc_per_node) \
467+
--max_grad_norm 0.5 \
468+
--warmup_ratio 0.03 \
469+
--eval_steps 100 \
470+
--save_steps 100 \
471+
--save_total_limit 2 \
472+
--logging_steps 10
473+
```
474+
475+
merge lora
476+
```
477+
CUDA_VISIBLE_DEVICES=0 swift export \
478+
--ckpt_dir '/path/to/qwen-7b-chat/vx-xxx/checkpoint-xxx' --merge_lora true
479+
```
480+
### AgentFabric
481+
#### Environment Setup:
482+
```bash
483+
git clone https://github.com/modelscope/modelscope-agent.git
484+
cd modelscope-agent && pip install -r requirements.txt && pip install -r apps/agentfabric/requirements.txt
485+
```
486+
487+
#### Model Deployment
488+
Launch vllm service:
489+
Use any of the following methods to deploy the model.
490+
491+
##### swift deploy
492+
```bash
493+
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir /path/to/qwen-7b-chat/vx-xxx/checkpoint-xxxx-merged
494+
```
495+
496+
##### vllm
497+
```bash
498+
python -m vllm.entrypoints.openai.api_server --model /path/to/qwen-7b-chat/vx-xxx/checkpoint-xxxx-merged --trust-remote-code
499+
```
500+
501+
#### Adding Local Model Configuration
502+
503+
In /path/to/modelscope-agent/apps/agentfabric/config/model_config.json, add the merged local model:
504+
```
505+
"my-qwen-7b-chat": {
506+
"type": "openai",
507+
"model": "/path/to/qwen-7b-chat/vx-xxx/checkpoint-xxxx-merged",
508+
"api_base": "http://localhost:8000/v1",
509+
"is_chat": true,
510+
"is_function_call": false,
511+
"support_stream": false
512+
}
513+
```
514+
Note that if deploying with `swift deploy`, the value of `model` should be set to `qwen-7b-chat`.
515+
516+
#### Launching AgentFabric
517+
In the following practice, [Wanx Image Generation](https://help.aliyun.com/zh/dashscope/opening-service?spm=a2c4g.11186623.0.0.50724937O7n40B) and [Amap Weather]((https://lbs.amap.com/api/webservice/guide/create-project/get-key)) will be called, requiring manual setting of API KEY. After setting, start AgentFabric:
518+
```bash
519+
export PYTHONPATH=$PYTHONPATH:/path/to/your/modelscope-agent
520+
export DASHSCOPE_API_KEY=your_api_key
521+
export AMAP_TOKEN=your_api_key
522+
cd modelscope-agent/apps/agentfabric
523+
python app.py
524+
```
525+
After entering Agentfabric, select the local model my-qwen-7b-chat in the Configured models.
526+
527+
Choose the APIs that the agent can call, select Wanx Image Generation and Amap Weather here.
528+
529+
Click Update Configuration, wait for the configuration to complete, and interact with the Agent in the input box on the right.
530+
531+
> Weather Inquiry
532+
![agentfabric_1](../../resources/agentfabric_1.png)
533+
![agentfabric_2](../../resources/agentfabric_2.png)
534+
535+
> text2image
536+
![agentfabric_3](../../resources/agentfabric_3.png)
537+
![agentfabric_4](../../resources/agentfabric_4.png)
538+
539+
It can be seen that the fine-tuned model can correctly understand instructions and call tools.
425540
## Summary
426541
427542
Through the Agent training capability supported by SWIFT, we fine-tuned the qwen-7b-chat model using ms-agent and ms-bench. It can be seen that after fine-tuning, the model retains the general knowledge question-answering ability, and when the system field is added with APIs, it can correctly call and complete tasks. It should be noted that:

docs/source_en/LLM/Supported-models-datasets.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -228,6 +228,8 @@ The table below introduces the datasets supported by SWIFT:
228228
|sharegpt-gpt4|[AI-ModelScope/sharegpt_gpt4](https://modelscope.cn/datasets/AI-ModelScope/sharegpt_gpt4/summary)|103063|0|1286.2±2089.4, min=22, max=221080|chat, multilingual, general, multi-round|
229229
|🔥sharegpt-gpt4-mini|[AI-ModelScope/sharegpt_gpt4](https://modelscope.cn/datasets/AI-ModelScope/sharegpt_gpt4/summary)|6205|0|3511.6±6068.5, min=33, max=116018|chat, multilingual, general, multi-round, gpt4|
230230
|🔥ms-agent|[iic/ms_agent](https://modelscope.cn/datasets/iic/ms_agent/summary)|30000|0|647.7±217.1, min=199, max=2722|chat, agent, multi-round|
231+
|ms-agent-for-agentfabric-default|[AI-ModelScope/ms_agent_for_agentfabric](https://modelscope.cn/datasets/AI-ModelScope/ms_agent_for_agentfabric/summary)|30000|0|617.8±199.1, min=251, max=2657|chat, agent, multi-round|
232+
|ms-agent-for-agentfabric-addition|[AI-ModelScope/ms_agent_for_agentfabric](https://modelscope.cn/datasets/AI-ModelScope/ms_agent_for_agentfabric/summary)|488|0|2084.9±1514.8, min=489, max=7354|chat, agent, multi-round|
231233
|damo-agent-zh|[damo/MSAgent-Bench](https://modelscope.cn/datasets/damo/MSAgent-Bench/summary)|422115|161|965.7±440.9, min=321, max=31535|chat, agent, multi-round|
232234
|damo-agent-mini-zh|[damo/MSAgent-Bench](https://modelscope.cn/datasets/damo/MSAgent-Bench/summary)|39964|152|1230.9±350.1, min=558, max=4982|chat, agent, multi-round|
233235
|agent-instruct-all-en|[huangjintao/AgentInstruct_copy](https://modelscope.cn/datasets/huangjintao/AgentInstruct_copy/summary)|1866|0|1144.3±635.5, min=206, max=6412|chat, agent, multi-round|

0 commit comments

Comments
 (0)