|
15 | 15 | </p> |
16 | 16 |
|
17 | 17 | ## Features |
18 | | -1. supported sft method: [lora](https://arxiv.org/abs/2106.09685), [qlora](https://arxiv.org/abs/2305.14314), full(full parameter fine tuning), ... |
| 18 | +1. supported SFT methods: [lora](https://arxiv.org/abs/2106.09685), [qlora](https://arxiv.org/abs/2305.14314), full(full parameter fine-tuning) |
19 | 19 | 2. supported models: qwen-7b, [qwen-7b-chat](https://github.com/QwenLM/Qwen-7B), qwen-vl, [qwen-vl-chat](https://github.com/QwenLM/Qwen-VL), baichuan-7b, baichuan-13b, baichuan-13b-chat, chatglm2-6b, chatglm2-6b-32k, llama2-7b, llama2-7b-chat, llama2-13b, llama2-13b-chat, llama2-70b, llama2-70b-chat, openbuddy-llama2-13b, openbuddy-llama-65b, polylm-13b |
20 | | -3. supported feature: quantization, ddp, model parallelism(device map), gradient checkpoint, gradient accumulation steps, push to modelscope hub, custom datasets, multimodal and agent sft, mutli-round chat, ... |
| 20 | +3. supported features: quantization, ddp, model parallelism(device map), gradient checkpointing, gradient accumulation, pushing to modelscope hub, custom datasets, multimodal and agent SFT, mutli-round chat, ... |
21 | 21 | 4. supported datasets: |
22 | | - 1. nlp: alpaca-en(gpt4), alpaca-zh(gpt4), finance-en, multi-alpaca-all, code-en, instinwild-en, instinwild-zh, cot-en, cot-zh, firefly-all-zh, poetry-zh |
23 | | - 2. agent: damo-agent-zh, damo-agent-mini-zh |
| 22 | + 1. NLP: alpaca-en(gpt4), alpaca-zh(gpt4), finance-en, multi-alpaca-all, code-en, instinwild-en, instinwild-zh, cot-en, cot-zh, firefly-all-zh, poetry-zh, instruct-en, gpt4all-en |
| 23 | + 2. agent: [damo-agent-zh](https://modelscope.cn/datasets/damo/MSAgent-Bench/summary), damo-agent-mini-zh |
24 | 24 | 3. multi-modal: coco-en |
25 | 25 | 5. supported templates: chatml(qwen), baichuan, chatglm2, llama, openbuddy_llama, default |
26 | 26 |
|
@@ -60,7 +60,7 @@ git clone https://github.com/modelscope/swift.git |
60 | 60 | cd swift/examples/pytorch/llm |
61 | 61 |
|
62 | 62 | # sft(qlora) and infer qwen-7b, Requires 16GB VRAM. |
63 | | -# If you want to use quantification, you need to `pip install bitsandbytes` |
| 63 | +# If you want to use quantification, you need to `pip install bitsandbytes -U` |
64 | 64 | # If you want to push weights into modelscope hub during training, you need to set '--push_to_hub true' |
65 | 65 | bash scripts/qwen_7b_chat/qlora/sft.sh |
66 | 66 | bash scripts/qwen_7b_chat/qlora/infer.sh |
|
0 commit comments