|
16 | 16 |
|
17 | 17 | ## Features |
18 | 18 | 1. supported SFT methods: [lora](https://arxiv.org/abs/2106.09685), [qlora](https://arxiv.org/abs/2305.14314), full(full parameter fine-tuning) |
19 | | -2. supported models: qwen-7b, [qwen-7b-chat](https://github.com/QwenLM/Qwen-7B), qwen-vl, [qwen-vl-chat](https://github.com/QwenLM/Qwen-VL), baichuan-7b, baichuan-13b, baichuan-13b-chat, chatglm2-6b, chatglm2-6b-32k, llama2-7b, llama2-7b-chat, llama2-13b, llama2-13b-chat, llama2-70b, llama2-70b-chat, openbuddy-llama2-13b, openbuddy-llama-65b, openbuddy-llama2-70b, polylm-13b |
| 19 | +2. supported models: qwen-7b, [qwen-7b-chat](https://github.com/QwenLM/Qwen-7B), qwen-vl, [qwen-vl-chat](https://github.com/QwenLM/Qwen-VL), baichuan-7b, baichuan-13b, baichuan-13b-chat, chatglm2-6b, chatglm2-6b-32k, llama2-7b, llama2-7b-chat, llama2-13b, llama2-13b-chat, llama2-70b, llama2-70b-chat, openbuddy-llama2-13b, openbuddy-llama-65b, openbuddy-llama2-70b, polylm-13b, baichuan2-7b, baichuan2-7b-chat, baichuan2-13b, baichuan2-13b-chat |
20 | 20 | 3. supported features: quantization, ddp, model parallelism(device map), gradient checkpointing, gradient accumulation, pushing to modelscope hub, custom datasets, multimodal and agent SFT, mutli-round chat, ... |
21 | 21 | 4. supported datasets: |
22 | 22 | 1. NLP: alpaca-en(gpt4), alpaca-zh(gpt4), finance-en, multi-alpaca-all, code-en, instinwild-en, instinwild-zh, cot-en, cot-zh, firefly-all-zh, poetry-zh, instruct-en, gpt4all-en |
@@ -59,20 +59,24 @@ pip install . |
59 | 59 | git clone https://github.com/modelscope/swift.git |
60 | 60 | cd swift/examples/pytorch/llm |
61 | 61 |
|
| 62 | +# sft lora and infer qwen-7b, Requires 22GB VRAM. |
| 63 | +# If you want to push weights into modelscope hub during training, you need to set '--push_to_hub true' |
| 64 | +bash scripts/qwen_7b_chat/lora/sft.sh |
| 65 | +bash scripts/qwen_7b_chat/lora/infer.sh |
| 66 | + |
| 67 | +# sft(lora+ddp) and infer qwen-7b, Requires 4*22GB VRAM. |
| 68 | +bash scripts/qwen_7b_chat/lora_ddp/sft.sh |
| 69 | +bash scripts/qwen_7b_chat/lora_ddp/infer.sh |
| 70 | + |
62 | 71 | # sft(qlora) and infer qwen-7b, Requires 16GB VRAM. |
63 | 72 | # If you want to use quantification, you need to `pip install bitsandbytes -U` |
64 | | -# If you want to push weights into modelscope hub during training, you need to set '--push_to_hub true' |
65 | 73 | bash scripts/qwen_7b_chat/qlora/sft.sh |
66 | 74 | bash scripts/qwen_7b_chat/qlora/infer.sh |
67 | 75 |
|
68 | 76 | # sft(qlora+ddp) and infer qwen-7b, Requires 4*16GB VRAM. |
69 | 77 | bash scripts/qwen_7b_chat/qlora_ddp/sft.sh |
70 | 78 | bash scripts/qwen_7b_chat/qlora_ddp/infer.sh |
71 | 79 |
|
72 | | -# sft(lora+ddp) and infer qwen-7b, Requires 4*22GB VRAM. |
73 | | -bash scripts/qwen_7b_chat/lora_ddp/sft.sh |
74 | | -bash scripts/qwen_7b_chat/lora_ddp/infer.sh |
75 | | - |
76 | 80 | # sft(full) and infer qwen-7b, Requires 95GB VRAM. |
77 | 81 | bash scripts/qwen_7b_chat/full/sft.sh |
78 | 82 | bash scripts/qwen_7b_chat/full/infer.sh |
|
0 commit comments