|
| 1 | +# 介绍 |
| 2 | + |
| 3 | +Swift是一个提供LLM模型轻量级训练和推理的开源框架。Swift提供的主要能力是`efficient tuners`,tuners是运行时动态加载到模型上的额外结构,在训练时将原模型的参数冻结,只训练tuner部分,这样可以达到快速训练、降低显存使用的目的。比如,最常用的tuner是LoRA。 |
| 4 | + |
| 5 | +总之,在这个框架中提供了以下特性: |
| 6 | + |
| 7 | +- **具备SOTA特性的Efficient Tuners**:用于结合大模型实现轻量级(在商业级显卡上)训练和推理,并取得较好效果 |
| 8 | +- **使用ModelScope Hub的Trainer**:基于`transformers trainer`提供,支持LLM模型的训练,并支持将训练后的模型上传到[ModelScope Hub](https://www.modelscope.cn/models)中 |
| 9 | +- **可运行的模型Examples**:针对热门大模型提供的训练脚本和推理脚本,并针对热门开源数据集提供了预处理逻辑,可直接运行使用 |
| 10 | + |
| 11 | +# 快速开始 |
| 12 | + |
| 13 | +在本章节会介绍如何快速安装swift并设定好运行环境,并跑通一个用例。 |
| 14 | + |
| 15 | +安装swift的方式非常简单,用户只需要在python>=3.8环境中运行: |
| 16 | + |
| 17 | +```shell |
| 18 | +pip install ms-swift |
| 19 | +``` |
| 20 | + |
| 21 | +下面的代码使用LoRA在分类任务上训练了`bert-base-uncased`模型: |
| 22 | + |
| 23 | +**运行下面的代码前请额外安装modelscope: ** |
| 24 | + |
| 25 | +```shell |
| 26 | +pip install modelscope>=1.9.0 |
| 27 | +``` |
| 28 | + |
| 29 | +```python |
| 30 | +import os |
| 31 | +os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
| 32 | + |
| 33 | +from modelscope import AutoModelForSequenceClassification, AutoTokenizer, MsDataset |
| 34 | +from transformers import default_data_collator |
| 35 | + |
| 36 | +from swift import Trainer, LoRAConfig, Swift, TrainingArguments |
| 37 | + |
| 38 | + |
| 39 | +model = AutoModelForSequenceClassification.from_pretrained( |
| 40 | + 'AI-ModelScope/bert-base-uncased', revision='v1.0.0') |
| 41 | +tokenizer = AutoTokenizer.from_pretrained( |
| 42 | + 'AI-ModelScope/bert-base-uncased', revision='v1.0.0') |
| 43 | +lora_config = LoRAConfig(target_modules=['query', 'key', 'value']) |
| 44 | +model = Swift.prepare_model(model, config=lora_config) |
| 45 | + |
| 46 | +train_dataset = MsDataset.load('clue', subset_name='afqmc', split='train').to_hf_dataset().select(range(100)) |
| 47 | +val_dataset = MsDataset.load('clue', subset_name='afqmc', split='validation').to_hf_dataset().select(range(100)) |
| 48 | + |
| 49 | + |
| 50 | +def tokenize_function(examples): |
| 51 | + return tokenizer(examples["sentence1"], examples["sentence2"], |
| 52 | + padding="max_length", truncation=True, max_length=128) |
| 53 | + |
| 54 | + |
| 55 | +train_dataset = train_dataset.map(tokenize_function) |
| 56 | +val_dataset = val_dataset.map(tokenize_function) |
| 57 | + |
| 58 | +arguments = TrainingArguments( |
| 59 | + output_dir='./outputs', |
| 60 | + per_device_train_batch_size=16, |
| 61 | +) |
| 62 | + |
| 63 | +trainer = Trainer(model, arguments, train_dataset=train_dataset, |
| 64 | + eval_dataset=val_dataset, |
| 65 | + data_collator=default_data_collator,) |
| 66 | + |
| 67 | +trainer.train() |
| 68 | +``` |
| 69 | + |
| 70 | +在上面的例子中,我们使用了`bert-base-uncased`作为基模型,将LoRA模块patch到了['query', 'key', 'value']三个Linear上,进行了一次训练。 |
| 71 | + |
| 72 | +训练结束后可以看到outputs文件夹,它的文件结构如下: |
| 73 | + |
| 74 | +> outputs |
| 75 | +> |
| 76 | +> |-- checkpoint-xx |
| 77 | +> |
| 78 | +> |-- configuration.json |
| 79 | +> |
| 80 | +> |-- default |
| 81 | +> |
| 82 | +> |-- adapter_config.json |
| 83 | +> |
| 84 | +> |-- adapter_model.bin |
| 85 | +> |
| 86 | +> |-- ... |
| 87 | +
|
| 88 | +可以使用该文件夹执行推理: |
| 89 | + |
| 90 | +```python |
| 91 | +from modelscope import AutoModelForSequenceClassification, AutoTokenizer |
| 92 | +from swift import Trainer, LoRAConfig, Swift |
| 93 | + |
| 94 | + |
| 95 | +model = AutoModelForSequenceClassification.from_pretrained( |
| 96 | + 'AI-ModelScope/bert-base-uncased', revision='v1.0.0') |
| 97 | +tokenizer = AutoTokenizer.from_pretrained( |
| 98 | + 'AI-ModelScope/bert-base-uncased', revision='v1.0.0') |
| 99 | +lora_config = LoRAConfig(target_modules=['query', 'key', 'value']) |
| 100 | +model = Swift.from_pretrained(model, model_id='./outputs/checkpoint-21') |
| 101 | + |
| 102 | +print(model(**tokenizer('this is a test', return_tensors='pt'))) |
| 103 | +``` |
0 commit comments