Skip to content

Commit e4f47bc

Browse files
add ruozhiba datasets (#670)
1 parent 939a221 commit e4f47bc

File tree

6 files changed

+161
-18
lines changed

6 files changed

+161
-18
lines changed

README.md

Lines changed: 16 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,7 @@ To facilitate use by users unfamiliar with deep learning, we provide a Gradio we
3939
Additionally, we are expanding capabilities for other modalities. Currently, we support full-parameter training and LoRA training for AnimateDiff.
4040

4141
## 🎉 News
42+
- 🔥2024.04.09: Support ruozhiba dataset. Search `ruozhiba` in [this documentation](docs/source_en/LLM/Supported-models-datasets.md) to begin training!
4243
- 2024.04.08: Support the fine-tuning and inference of XVERSE-MoE-A4.2B model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/xverse_moe_a4_2b/lora/sft.sh) to start training!
4344
- 2024.04.04: Support **QLoRA+FSDP** to train a 70B model with two 24G memory GPUs, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/sft.sh) to train.
4445
- 🔥2024.04.03: Support **Qwen1.5-32B** series: Qwen1.5-32B, Qwen1.5-32B-Chat, Qwen1.5-32B-Chat-GPTQ-Int4.use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/qwen1half_32b_chat/lora_mp/sft.sh) to start training!
@@ -427,22 +428,22 @@ CUDA_VISIBLE_DEVICES=0 swift deploy \
427428

428429
### Supported Open Source Datasets
429430

430-
| Dataset Type | Training Task | Documentation |
431+
| Dataset Type | Training Task | Documentation |
431432
|--------------|:---------------|--------------------------------------------------------------- |
432-
| General | Fine-tuning | 🔥ms-bench, 🔥ms-bench-mini, 🔥alpaca-en(gpt4), 🔥alpaca-zh(gpt4), multi-alpaca-all, instinwild-en, instinwild-zh, cot-en, cot-zh, firefly-all-zh, instruct-en, gpt4all-en, sharegpt-en, sharegpt-zh, tulu-v2-sft-mixture, wikipedia-zh, open-orca, open-orca-gpt4, sharegpt-gpt4, 🔥sharegpt-gpt4-mini. |
433-
| Agent | Fine-tuning | 🔥ms-agent, damo-mini-agent-zh, damo-agent-zh, agent-instruct-all-en. |
434-
| General | Human Alignment | 🔥hh-rlhf-cn, stack-exchange-paired, hh-rlhf-harmless-base, hh-rlhf-helpful-base, hh-rlhf-helpful-online, hh-rlhf-helpful-rejection-sampled, hh-rlhf-red-team-attempts, hh-rlhf-cn-harmless-base-cn, hh-rlhf-cn-helpful-base-cn, hh-rlhf-cn-harmless-base-en, hh-rlhf-cn-helpful-base-en. |
435-
| Code | Fine-tuning | code-alpaca-en, 🔥leetcode-python-en, 🔥codefuse-python-en, 🔥codefuse-evol-instruction-zh. |
436-
| Medical | Fine-tuning | medical-en, medical-zh, medical-mini-zh, 🔥disc-med-sft-zh. |
437-
| Legal | Fine-tuning | lawyer-llama-zh, tigerbot-law-zh, 🔥disc-law-sft-zh. |
438-
| Math | Fine-tuning | 🔥blossom-math-zh, school-math-zh, open-platypus-en. |
439-
| SQL | Fine-tuning | text2sql-en, 🔥sql-create-context-en. |
440-
| Text Generation | Fine-tuning | 🔥advertise-gen-zh, 🔥dureader-robust-zh. |
441-
| Classification | Fine-tuning | cmnli-zh, 🔥cmnli-mini-zh, 🔥jd-sentiment-zh, 🔥hc3-zh, 🔥hc3-en. |
442-
| Quantization Assist | Quantization | pileval. |
443-
| Other | Fine-tuning | finance-en, poetry-zh, webnovel-zh, generated-chat-zh, cls-fudan-news-zh, ner-jave-zh. |
444-
| Vision | Fine-tuning | coco-en, 🔥coco-mini-en, coco-mini-en-2, capcha-images. |
445-
| Audio | Fine-tuning | aishell1-zh, 🔥aishell1-mini-zh. |
433+
| General | Fine-tuning | 🔥ruozhiba, 🔥ms-bench, 🔥ms-bench-mini, 🔥alpaca-en(gpt4), 🔥alpaca-zh(gpt4), multi-alpaca-all, instinwild-en, instinwild-zh, cot-en, cot-zh, firefly-all-zh, instruct-en, gpt4all-en, sharegpt-en, sharegpt-zh, tulu-v2-sft-mixture, wikipedia-zh, open-orca, open-orca-gpt4, sharegpt-gpt4, 🔥sharegpt-gpt4-mini. |
434+
| Agent | Fine-tuning | 🔥ms-agent, damo-mini-agent-zh, damo-agent-zh, agent-instruct-all-en. |
435+
| General | Human Alignment | 🔥hh-rlhf-cn, stack-exchange-paired, hh-rlhf-harmless-base, hh-rlhf-helpful-base, hh-rlhf-helpful-online, hh-rlhf-helpful-rejection-sampled, hh-rlhf-red-team-attempts, hh-rlhf-cn-harmless-base-cn, hh-rlhf-cn-helpful-base-cn, hh-rlhf-cn-harmless-base-en, hh-rlhf-cn-helpful-base-en. |
436+
| Code | Fine-tuning | code-alpaca-en, 🔥leetcode-python-en, 🔥codefuse-python-en, 🔥codefuse-evol-instruction-zh. |
437+
| Medical | Fine-tuning | medical-en, medical-zh, medical-mini-zh, 🔥disc-med-sft-zh. |
438+
| Legal | Fine-tuning | lawyer-llama-zh, tigerbot-law-zh, 🔥disc-law-sft-zh. |
439+
| Math | Fine-tuning | 🔥blossom-math-zh, school-math-zh, open-platypus-en. |
440+
| SQL | Fine-tuning | text2sql-en, 🔥sql-create-context-en. |
441+
| Text Generation | Fine-tuning | 🔥advertise-gen-zh, 🔥dureader-robust-zh. |
442+
| Classification | Fine-tuning | cmnli-zh, 🔥cmnli-mini-zh, 🔥jd-sentiment-zh, 🔥hc3-zh, 🔥hc3-en. |
443+
| Quantization Assist | Quantization | pileval. |
444+
| Other | Fine-tuning | finance-en, poetry-zh, webnovel-zh, generated-chat-zh, cls-fudan-news-zh, ner-jave-zh. |
445+
| Vision | Fine-tuning | coco-en, 🔥coco-mini-en, coco-mini-en-2, capcha-images. |
446+
| Audio | Fine-tuning | aishell1-zh, 🔥aishell1-mini-zh. |
446447

447448
### Supported Technologies
448449

README_CN.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,6 +40,7 @@ SWIFT支持近**200种LLM和MLLM**(多模态大模型)的训练、推理、
4040
此外,我们也在拓展其他模态的能力,目前我们支持了AnimateDiff的全参数训练和LoRA训练。
4141

4242
## 🎉 新闻
43+
- 🔥2024.04.09: 支持`弱智吧`系列数据集. 在[支持的模型和数据集文档](docs/source/LLM/支持的模型和数据集.md)中搜索`ruozhiba`来找到数据集并开始训练!
4344
- 2024.04.08: 支持XVERSE-MoE-A4.2B模型的推理与微调, 使用[这个脚本](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/xverse_moe_a4_2b/lora/sft.sh)来开始训练!
4445
- 2024.04.04: 支持使用**QLoRA+FSDP**来使用两张24G显卡训练70B模型, 使用[这个脚本](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/sft.sh)开始训练.
4546
- 🔥2024.04.03: 支持**Qwen1.5-32B**系列: Qwen1.5-32B, Qwen1.5-32B-Chat, Qwen1.5-32B-Chat-GPTQ-Int4。使用[这个脚本](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/qwen1half_32b_chat/lora_mp/sft.sh)来开始训练!
@@ -428,7 +429,7 @@ CUDA_VISIBLE_DEVICES=0 swift deploy \
428429

429430
| 数据集类型 | 训练任务 | 文档 |
430431
| ---------- | :------- | ------------------------------------------------------------ |
431-
| 通用 | 微调 | 🔥ms-bench, 🔥ms-bench-mini, 🔥alpaca-en(gpt4), 🔥alpaca-zh(gpt4), multi-alpaca-all, instinwild-en, instinwild-zh, cot-en, cot-zh, firefly-all-zh, instruct-en, gpt4all-en, sharegpt-en, sharegpt-zh, tulu-v2-sft-mixture, wikipedia-zh, open-orca, open-orca-gpt4, sharegpt-gpt4, 🔥sharegpt-gpt4-mini. |
432+
| 通用 | 微调 | 🔥ruozhiba, 🔥ms-bench, 🔥ms-bench-mini, 🔥alpaca-en(gpt4), 🔥alpaca-zh(gpt4), multi-alpaca-all, instinwild-en, instinwild-zh, cot-en, cot-zh, firefly-all-zh, instruct-en, gpt4all-en, sharegpt-en, sharegpt-zh, tulu-v2-sft-mixture, wikipedia-zh, open-orca, open-orca-gpt4, sharegpt-gpt4, 🔥sharegpt-gpt4-mini. |
432433
| Agent | 微调 | 🔥ms-agent, damo-mini-agent-zh, damo-agent-zh, agent-instruct-all-en. |
433434
| 通用 | 人类对齐 | 🔥hh-rlhf-cn, stack-exchange-paired, hh-rlhf-harmless-base, hh-rlhf-helpful-base, hh-rlhf-helpful-online, hh-rlhf-helpful-rejection-sampled, hh-rlhf-red-team-attempts, hh-rlhf-cn-harmless-base-cn, hh-rlhf-cn-helpful-base-cn, hh-rlhf-cn-harmless-base-en, hh-rlhf-cn-helpful-base-en. |
434435
| 代码 | 微调 | code-alpaca-en, 🔥leetcode-python-en, 🔥codefuse-python-en, 🔥codefuse-evol-instruction-zh. |

docs/source/LLM/支持的模型和数据集.md

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -294,3 +294,19 @@
294294
|hh-rlhf-cn-helpful-base-en|[AI-ModelScope/hh_rlhf_cn](https://modelscope.cn/datasets/AI-ModelScope/hh_rlhf_cn/summary)|43722|2346|202.2±135.3, min=25, max=1070|rlhf, dpo, pairwise|
295295
|stack-exchange-paired|[AI-ModelScope/stack-exchange-paired](https://modelscope.cn/datasets/AI-ModelScope/stack-exchange-paired/summary)|4483004|0|534.5±594.6, min=31, max=56588|hfrl, dpo, pairwise|
296296
|pileval|[huangjintao/pile-val-backup](https://modelscope.cn/datasets/huangjintao/pile-val-backup/summary)|214670|0|1612.3±8856.2, min=11, max=1208955|text-generation, awq|
297+
|🔥coig-cqia-chinese-traditional|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|1111|0|172.6±59.9, min=55, max=856|general|
298+
|🔥coig-cqia-coig-pc|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|3000|0|353.5±859.6, min=34, max=19288|general|
299+
|🔥coig-cqia-exam|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|4856|0|275.0±240.0, min=45, max=4932|general|
300+
|🔥coig-cqia-finance|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|11288|0|1266.4±561.1, min=60, max=10582|general|
301+
|🔥coig-cqia-douban|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|3086|0|402.9±544.7, min=88, max=10870|general|
302+
|🔥coig-cqia-human-value|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|1007|0|151.2±77.3, min=39, max=656|general|
303+
|🔥coig-cqia-logi-qa|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|421|0|309.8±188.8, min=43, max=1306|general|
304+
|🔥coig-cqia-ruozhiba|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|240|0|189.8±62.2, min=33, max=505|general|
305+
|🔥coig-cqia-segmentfault|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|458|0|449.0±495.8, min=87, max=6342|general|
306+
|🔥coig-cqia-wiki|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|10603|0|619.2±515.8, min=73, max=10140|general|
307+
|🔥coig-cqia-wikihow|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|1485|0|1700.0±790.9, min=260, max=6371|general|
308+
|🔥coig-cqia-xhs|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|1508|0|438.0±179.6, min=129, max=2191|general|
309+
|🔥coig-cqia-zhihu|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|5631|0|540.7±306.7, min=161, max=3036|general|
310+
|🔥ruozhiba-post-annual|[AI-ModelScope/ruozhiba](https://modelscope.cn/datasets/AI-ModelScope/ruozhiba/summary)|1361|0|36.6±15.3, min=24, max=559|pretrain|
311+
|🔥ruozhiba-title-good|[AI-ModelScope/ruozhiba](https://modelscope.cn/datasets/AI-ModelScope/ruozhiba/summary)|2597|0|41.9±19.3, min=22, max=246|pretrain|
312+
|🔥ruozhiba-title-norm|[AI-ModelScope/ruozhiba](https://modelscope.cn/datasets/AI-ModelScope/ruozhiba/summary)|81700|0|39.9±12.8, min=21, max=386|pretrain|

docs/source_en/LLM/Supported-models-datasets.md

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -278,3 +278,19 @@ The table below introduces the datasets supported by SWIFT:
278278
|hh-rlhf-cn-helpful-base-en|[AI-ModelScope/hh_rlhf_cn](https://modelscope.cn/datasets/AI-ModelScope/hh_rlhf_cn/summary)|43722|2346|202.2±135.3, min=25, max=1070|rlhf, dpo, pairwise|
279279
|stack-exchange-paired|[AI-ModelScope/stack-exchange-paired](https://modelscope.cn/datasets/AI-ModelScope/stack-exchange-paired/summary)|4483004|0|534.5±594.6, min=31, max=56588|hfrl, dpo, pairwise|
280280
|pileval|[huangjintao/pile-val-backup](https://modelscope.cn/datasets/huangjintao/pile-val-backup/summary)|214670|0|1612.3±8856.2, min=11, max=1208955|text-generation, awq|
281+
|🔥coig-cqia-chinese-traditional|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|1111|0|172.6±59.9, min=55, max=856|general|
282+
|🔥coig-cqia-coig-pc|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|3000|0|353.5±859.6, min=34, max=19288|general|
283+
|🔥coig-cqia-exam|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|4856|0|275.0±240.0, min=45, max=4932|general|
284+
|🔥coig-cqia-finance|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|11288|0|1266.4±561.1, min=60, max=10582|general|
285+
|🔥coig-cqia-douban|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|3086|0|402.9±544.7, min=88, max=10870|general|
286+
|🔥coig-cqia-human-value|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|1007|0|151.2±77.3, min=39, max=656|general|
287+
|🔥coig-cqia-logi-qa|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|421|0|309.8±188.8, min=43, max=1306|general|
288+
|🔥coig-cqia-ruozhiba|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|240|0|189.8±62.2, min=33, max=505|general|
289+
|🔥coig-cqia-segmentfault|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|458|0|449.0±495.8, min=87, max=6342|general|
290+
|🔥coig-cqia-wiki|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|10603|0|619.2±515.8, min=73, max=10140|general|
291+
|🔥coig-cqia-wikihow|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|1485|0|1700.0±790.9, min=260, max=6371|general|
292+
|🔥coig-cqia-xhs|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|1508|0|438.0±179.6, min=129, max=2191|general|
293+
|🔥coig-cqia-zhihu|[AI-ModelScope/COIG-CQIA](https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary)|5631|0|540.7±306.7, min=161, max=3036|general|
294+
|🔥ruozhiba-post-annual|[AI-ModelScope/ruozhiba](https://modelscope.cn/datasets/AI-ModelScope/ruozhiba/summary)|1361|0|36.6±15.3, min=24, max=559|pretrain|
295+
|🔥ruozhiba-title-good|[AI-ModelScope/ruozhiba](https://modelscope.cn/datasets/AI-ModelScope/ruozhiba/summary)|2597|0|41.9±19.3, min=22, max=246|pretrain|
296+
|🔥ruozhiba-title-norm|[AI-ModelScope/ruozhiba](https://modelscope.cn/datasets/AI-ModelScope/ruozhiba/summary)|81700|0|39.9±12.8, min=21, max=386|pretrain|

requirements/framework.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ dacite
33
datasets
44
jieba
55
matplotlib
6-
modelscope>=1.9.3
6+
modelscope>=1.13.3
77
nltk
88
numpy
99
optimum>=1.17.0

0 commit comments

Comments
 (0)