You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+4-4Lines changed: 4 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -45,6 +45,7 @@ Additionally, we are expanding capabilities for other modalities. Currently, we
45
45
SWIFT has rich documentations for users, please check [here](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM).
46
46
47
47
## 🎉 News
48
+
- 🔥2024.05.20: Support for inferencing and fine-tuning [cogvlm2-llama3-chinese-chat-19B](https://modelscope.cn/models/ZhipuAI/cogvlm2-llama3-chinese-chat-19B/summary), you can refer to [cogvlm2 Best Practices](docs/source_en/Multi-Modal/cogvlm2-best-practice.md).
48
49
- 🔥2024.05.17: Support peft=0.11.0. Meanwhile support 3 new tuners: `BOFT`, `Vera` and `Pissa`. use `--sft_type boft/vera` to use BOFT or Vera, use `--init_lora_weights pissa` with `--sft_type lora` to use Pissa.
49
50
- 2024.05.16: Supports Llava-Next (Stronger) series models. For best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source_en/Multi-Modal/llava-best-practice.md).
50
51
- 🔥2024.05.13: Support Yi-1.5 series models,use `--model_type yi-1_5-9b-chat` to begin!
@@ -62,6 +63,8 @@ SWIFT has rich documentations for users, please check [here](https://github.com/
62
63
- 2024.04.20: Support for inference, fine-tuning, and deployment of **Atom** series models. This includes: Atom-7B and Atom-7B-Chat. use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/atom_7b_chat/lora/sft.sh) to train.
63
64
- 2024.04.19: Support for single-card, DDP, ZeRO2, and ZeRO3 training and inference with NPU, please refer to [NPU Inference and Fine-tuning Best Practices](docs/source_en/LLM/NPU-best-practice.md).
64
65
- 2024.04.19: Support for inference, fine-tuning, and deployment of **Llama3** series models. This includes: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B, and Llama-3-70B-Instruct. use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama3_8b_instruct/lora/sft.sh) to train.
- 2024.04.18: Supported compatibility with HuggingFace ecosystem using the environment variable `USE_HF`, switching to use models and datasets from HF. Please refer to the [HuggingFace ecosystem compatibility documentation](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM/Compat-HF.md).
67
70
- 2024.04.17: Support the evaluation for OpenAI standard interfaces. Check the [parameter documentation](docs/source_en/LLM/Command-line-parameters.md#eval-parameters) for details.
@@ -82,8 +85,6 @@ SWIFT has rich documentations for users, please check [here](https://github.com/
82
85
- 🔥2024.03.29: Support the fine-tuning and inference of **Grok-1** 300B MoE, please view details [here](https://github.com/modelscope/swift/tree/main/docs/source_en/LLM/Grok-1-best-practice.md).
83
86
- 🔥2024.03.25: Supports inference and fine-tuning of TeleChat-7b and TeleChat-12b model, use [this script](https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/telechat_12b/lora/sft.sh) to start training!
84
87
- 🔥2024.03.20: Supports inference and fine-tuning for the **llava** series. For best practice, you can refer to [here](https://github.com/modelscope/swift/tree/main/docs/source_en/Multi-Modal/llava-best-practice.md).
85
-
<details><summary>More</summary>
86
-
87
88
- 🔥2024.03.12: Support inference and fine-tuning for **deepseek-vl** series. Best practices can be found [here](docs/source_en/Multi-Modal/deepseek-vl-best-practice.md).
88
89
- 🔥2024.03.11: Support [GaLore](https://arxiv.org/abs/2403.03507) for effectively reducing memory usage to 1/2 of the original in full-parameter training.
89
90
- 🔥2024.03.10: [End-to-end best practices](docs/source_en/LLM/Qwen1.5-best-practice.md) from fine-tuning to deployment for Qwen1.5-7B-Chat and Qwen1.5-72B-Chat.
@@ -114,7 +115,6 @@ SWIFT has rich documentations for users, please check [here](https://github.com/
114
115
- 2024.01.15: Support yuan series: yuan2-2b-instruct, [yuan2-2b-janus-instruct](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yuan2_2b_janus_instruct), yuan2-51b-instruct, yuan2-102b-instruct.
115
116
- 🔥2024.01.12: Support **deepseek-moe** series: deepseek-moe-16b, [deepseek-moe-16b-chat](https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/deepseek_moe_16b_chat).
116
117
- 🔥2024.01.04: Support **VLLM deployment**, compatible with **OpenAI API** style, see [VLLM Inference Acceleration and Deployment](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/VLLM-inference-acceleration-and-deployment.md#Deployment) for details.
117
-
118
118
- 2024.01.04: Update [Benchmark](https://github.com/modelscope/swift/blob/main/docs/source/LLM/Benchmark.md) for convenient viewing of training speed and memory usage of different models.
119
119
- 🔥2023.12.29: Support web-ui for sft training and inference, use `swift web-ui` after installing ms-swift to start.
120
120
- 🔥2023.12.29: Support DPO RLHF (Reinforcement Learning from Human Feedback) and three datasets for this task: AI-ModelScope/stack-exchange-paired, AI-ModelScope/hh-rlhf and AI-ModelScope/hh_rlhf_cn. See [documentation](https://github.com/modelscope/swift/blob/main/docs/source_en/LLM/DPO.md) to start training!
@@ -518,7 +518,7 @@ The complete list of supported models and datasets can be found at [Supported Mo
518
518
| XComposer2 |[Pujiang AI Lab InternLM vision model](https://github.com/InternLM/InternLM)| Chinese<br>English | 7B | chat model |
519
519
| DeepSeek-VL |[DeepSeek series vision models](https://github.com/deepseek-ai)| Chinese<br>English | 1.3B-7B | chat model |
0 commit comments