Skip to content

Commit e8ed7e3

Browse files
authored
More packages (#81)
1 parent 56a6e0d commit e8ed7e3

File tree

2 files changed

+23
-8
lines changed

2 files changed

+23
-8
lines changed

optimizing/index.md

Lines changed: 15 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -17,12 +17,19 @@ title = "Optimizing your code"
1717
* [ProgressMeter.jl](https://github.com/timholy/ProgressMeter.jl)
1818
* [BenchmarkTools.jl](https://github.com/JuliaCI/BenchmarkTools.jl)
1919
* [TimerOutputs.jl](https://github.com/KristofferC/TimerOutputs.jl)
20+
21+
## Benchmark suites
22+
2023
* [PkgBenchmark.jl](https://github.com/JuliaCI/PkgBenchmark.jl)
24+
* [BenchmarkCI.jl](https://github.com/tkf/BenchmarkCI.jl) (unmaintained)
25+
* [AirSpeedVelocity.jl](https://github.com/MilesCranmer/AirspeedVelocity.jl)
26+
* [PkgJogger.jl](https://github.com/awadell1/PkgJogger.jl)
2127

2228
## Profiling
2329

24-
* [built-in](https://docs.julialang.org/en/v1/manual/profile/)
30+
* [built-in profiler](https://docs.julialang.org/en/v1/manual/profile/) and [allocation profiler](https://docs.julialang.org/en/v1/stdlib/Profile/#Memory-profiling)
2531
* [ProfileView.jl](https://github.com/timholy/ProfileView.jl) / [ProfileSVG.jl](https://github.com/kimikage/ProfileSVG.jl)
32+
* [PProf.jl](https://github.com/JuliaPerf/PProf.jl)
2633
* [profiling in VSCode](https://www.julia-vscode.org/docs/stable/userguide/profiler/)
2734

2835
## Type stability
@@ -31,6 +38,11 @@ title = "Optimizing your code"
3138
* [JET.jl](https://github.com/aviatesk/JET.jl)
3239
* [linting in VSCode](https://www.julia-vscode.org/docs/stable/userguide/linter/)
3340

41+
## Memory management
42+
43+
* [AllocCheck.jl](https://github.com/JuliaLang/AllocCheck.jl)
44+
* [BangBang.jl](https://github.com/JuliaFolds2/BangBang.jl)
45+
3446
## Precompilation
3547

3648
* [PrecompileTools.jl](https://github.com/JuliaLang/PrecompileTools.jl)
@@ -42,12 +54,11 @@ title = "Optimizing your code"
4254
## Parallelism
4355

4456
* [distributed vs. multithreading](https://docs.julialang.org/en/v1/manual/parallel-computing/)
45-
* [ThreadsX.jl](https://github.com/tkf/ThreadsX.jl)
46-
* [FLoops.jl](https://github.com/JuliaFolds/FLoops.jl)
57+
* [OhMyThreads.jl](https://github.com/JuliaFolds2/OhMyThreads.jl)
4758

4859
## SIMD / GPU
4960

50-
* [LoopVectorization.jl](https://github.com/JuliaSIMD/LoopVectorization.jl)
61+
* [LoopVectorization.jl](https://github.com/JuliaSIMD/LoopVectorization.jl) (deprecated in 1.11)
5162
* [Tullio.jl](https://github.com/mcabbott/Tullio.jl)
5263
* [KernelAbstractions.jl](https://github.com/JuliaGPU/KernelAbstractions.jl)
5364

sharing/index.md

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,8 @@ If you want to have more control over your tests, you can try
9393

9494
* [ReferenceTests.jl](https://github.com/JuliaTesting/ReferenceTests.jl) to compare function outputs with reference files.
9595
* [ReTest.jl](https://github.com/JuliaTesting/ReTest.jl) to define tests next to the source code and control their execution.
96-
* [TestItemRunner.jl](https://github.com/julia-vscode/TestItemRunner.jl) to leverage the testing interface of VSCode.
96+
* [TestItemRunner.jl](https://github.com/julia-vscode/TestItemRunner.jl) and [ReTestItems.jl](https://github.com/JuliaTesting/ReTestItems.jl) to leverage the testing interface of VSCode.
97+
* [TestReadme.jl](https://github.com/thchr/TestReadme.jl) to test whatever samples are in your README
9798

9899
}
99100

@@ -257,7 +258,7 @@ We now explore a few specific issues that often arise.
257258
A first hurdle is [random number generation](https://docs.julialang.org/en/v1/stdlib/Random/), which is not guaranteed to remain stable across Julia versions.
258259
To ensure that the random streams remain exactly the same, you need to use [StableRNGs.jl](https://github.com/JuliaRandom/StableRNGs.jl).
259260
Another aspect is dataset download and management.
260-
The packages [DataDeps.jl](https://github.com/oxinabox/DataDeps.jl) and [ArtifactUtils.jl](https://github.com/JuliaPackaging/ArtifactUtils.jl) can help you bundle non-code elements with your package.
261+
The packages [DataDeps.jl](https://github.com/oxinabox/DataDeps.jl), [DataToolkit.jl](https://github.com/tecosaur/DataToolkit.jl) and [ArtifactUtils.jl](https://github.com/JuliaPackaging/ArtifactUtils.jl) can help you bundle non-code elements with your package.
261262
A third thing to consider is proper citation and versioning.
262263
Giving your package a with [Zenodo](https://zenodo.org/) ensures that everyone can properly cite it in scientific publications.
263264
Similarly, your papers should cite the packages you use as dependencies: [PkgCite.jl](https://github.com/SebastianM-C/PkgCite.jl) will help with that.
@@ -266,12 +267,13 @@ Similarly, your papers should cite the packages you use as dependencies: [PkgCit
266267

267268
Making packages play nice with one another is a key goal of the Julia ecosystem.
268269
Since Julia 1.9, this can be done with [package extensions](https://pkgdocs.julialang.org/v1/creating-packages/#Conditional-loading-of-code-in-packages-(Extensions)), which override specific behaviors based on the presence of a given package in the environment.
269-
To preserve compatibility with earlier Julia versions, [PackageExtensionTools.jl](https://github.com/cjdoris/PackageExtensionTools.jl) is the way to go.
270+
[PackageExtensionTools.jl](https://github.com/cjdoris/PackageExtensionTools.jl) eases the pain of setting up extensions.
271+
As for compatibility with earlier Julia versions, [Compat.jl](https://github.com/JuliaLang/Compat.jl) is your best ally.
270272

271273
Furthermore, the Julia ecosystem as a whole plays nice with other programming languages too.
272274
[C and Fortran](https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/) are natively supported.
273275
Python can be easily interfaced with the combination of [CondaPkg.jl](https://github.com/cjdoris/CondaPkg.jl) and [PythonCall.jl](https://github.com/cjdoris/PythonCall.jl).
274-
Other language compatibility packages can be found in the [JuliaInterop](https://github.com/JuliaInterop) organization, like [RCall.jl](https://github.com/JuliaInterop/RCall.jl) or [Cxx.jl](https://github.com/JuliaInterop/Cxx.jl).
276+
Other language compatibility packages can be found in the [JuliaInterop](https://github.com/JuliaInterop) organization, like [RCall.jl](https://github.com/JuliaInterop/RCall.jl).
275277

276278
\advanced{
277279

@@ -281,6 +283,8 @@ This problem of "interfaces" does not yet have a definitive solution in Julia, b
281283

282284
}
283285

286+
Part of interoperability is also flexibility and customization: the [Preferences.jl](https://github.com/JuliaPackaging/Preferences.jl) package gives a nice way to specify various options in TOML files.
287+
284288
## Collaboration
285289

286290
Once your package grows big enough, you might need to bring in some help.

0 commit comments

Comments
 (0)