|
| 1 | +""" |
| 2 | +Edge case tests for GeospatialIndex to ensure robustness. |
| 3 | +""" |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pytest |
| 7 | +from scipy.spatial import Delaunay |
| 8 | + |
| 9 | +from flopy.discretization import VertexGrid |
| 10 | +from flopy.utils.geospatial_index import GeospatialIndex |
| 11 | + |
| 12 | + |
| 13 | +def test_thin_sliver_cell(): |
| 14 | + """ |
| 15 | + Test that GeospatialIndex can find points in very thin "sliver" cells |
| 16 | + where the centroid might be far from the actual cell location. |
| 17 | + """ |
| 18 | + # Create a grid with a very thin sliver cell |
| 19 | + # This tests the centroid+vertices KD-tree approach |
| 20 | + np.random.seed(42) |
| 21 | + |
| 22 | + # Create base random points |
| 23 | + n_points = 15 |
| 24 | + x_verts = np.random.uniform(0, 100, n_points).tolist() |
| 25 | + y_verts = np.random.uniform(0, 100, n_points).tolist() |
| 26 | + |
| 27 | + # Add vertices for a very thin vertical sliver at x=50 |
| 28 | + sliver_indices = [] |
| 29 | + for i in range(4): |
| 30 | + idx = len(x_verts) |
| 31 | + sliver_indices.append(idx) |
| 32 | + x_verts.append(50.0 + i * 0.05) # Very thin: 0.15 units wide |
| 33 | + y_verts.append(i * 33.33) # Tall: 100 units high |
| 34 | + |
| 35 | + # Create Delaunay triangulation |
| 36 | + points = np.column_stack([x_verts, y_verts]) |
| 37 | + tri = Delaunay(points) |
| 38 | + |
| 39 | + # Build VertexGrid |
| 40 | + vertices = [[i, x_verts[i], y_verts[i]] for i in range(len(x_verts))] |
| 41 | + cell2d = [] |
| 42 | + for i, simplex in enumerate(tri.simplices): |
| 43 | + # Calculate centroid |
| 44 | + cell_x = np.mean([x_verts[j] for j in simplex]) |
| 45 | + cell_y = np.mean([y_verts[j] for j in simplex]) |
| 46 | + cell2d.append([i, cell_x, cell_y, len(simplex)] + list(simplex)) |
| 47 | + |
| 48 | + ncells = len(cell2d) |
| 49 | + grid = VertexGrid( |
| 50 | + vertices=vertices, |
| 51 | + cell2d=cell2d, |
| 52 | + top=np.ones(ncells) * 10.0, |
| 53 | + botm=np.zeros(ncells) |
| 54 | + ) |
| 55 | + |
| 56 | + # Build index |
| 57 | + index = GeospatialIndex(grid) |
| 58 | + |
| 59 | + # Test points in/near the sliver region |
| 60 | + test_points = [ |
| 61 | + (50.025, 50.0), # Should be in a sliver cell |
| 62 | + (50.075, 25.0), # Should be in a sliver cell |
| 63 | + (50.025, 75.0), # Should be in a sliver cell |
| 64 | + ] |
| 65 | + |
| 66 | + found_count = 0 |
| 67 | + for x, y in test_points: |
| 68 | + result = index.query_point(x, y, k=20) # Use k=20 to be thorough |
| 69 | + if result is not None: |
| 70 | + # Verify the point is actually in the found cell |
| 71 | + xv, yv, _ = grid.xyzvertices |
| 72 | + verts = np.column_stack([xv[result], yv[result]]) |
| 73 | + from matplotlib.path import Path |
| 74 | + path = Path(verts) |
| 75 | + is_inside = path.contains_point((x, y), radius=1e-9) |
| 76 | + |
| 77 | + if is_inside: |
| 78 | + found_count += 1 |
| 79 | + print(f"✅ Point ({x}, {y}) correctly found in cell {result}") |
| 80 | + else: |
| 81 | + print(f"⚠️ Point ({x}, {y}) found in cell {result} but verification failed") |
| 82 | + else: |
| 83 | + print(f"❌ Point ({x}, {y}) NOT FOUND") |
| 84 | + |
| 85 | + # At least some points should be found |
| 86 | + # (not all may be in cells due to Delaunay triangulation specifics) |
| 87 | + assert found_count > 0, f"Should find at least some points in sliver cells, found {found_count}/3" |
| 88 | + |
| 89 | + |
| 90 | +def test_boundary_points(): |
| 91 | + """Test points exactly on cell boundaries.""" |
| 92 | + # Create simple 2x2 grid of triangles |
| 93 | + vertices = [ |
| 94 | + [0, 0.0, 0.0], |
| 95 | + [1, 1.0, 0.0], |
| 96 | + [2, 2.0, 0.0], |
| 97 | + [3, 0.0, 1.0], |
| 98 | + [4, 1.0, 1.0], |
| 99 | + [5, 2.0, 1.0], |
| 100 | + ] |
| 101 | + |
| 102 | + # Create triangular cells |
| 103 | + cell2d = [ |
| 104 | + [0, 0.33, 0.33, 3, 0, 1, 3], # Lower-left triangle |
| 105 | + [1, 0.67, 0.33, 3, 1, 4, 3], # Lower-middle triangle |
| 106 | + [2, 1.33, 0.33, 3, 1, 2, 4], # Lower-right triangle |
| 107 | + [3, 1.67, 0.67, 3, 2, 5, 4], # Upper-right triangle |
| 108 | + ] |
| 109 | + |
| 110 | + grid = VertexGrid( |
| 111 | + vertices=vertices, |
| 112 | + cell2d=cell2d, |
| 113 | + top=np.ones(4) * 10.0, |
| 114 | + botm=np.zeros(4) |
| 115 | + ) |
| 116 | + |
| 117 | + index = GeospatialIndex(grid) |
| 118 | + |
| 119 | + # Test point exactly on a shared edge (between cells 0 and 1) |
| 120 | + # Should find one of the two cells |
| 121 | + result = index.query_point(1.0, 0.5, k=10) |
| 122 | + assert result is not None or result == 0 or result == 1, \ |
| 123 | + "Point on boundary should be found in one of the adjacent cells" |
| 124 | + |
| 125 | + |
| 126 | +def test_corner_points(): |
| 127 | + """Test points at vertices (corners where multiple cells meet).""" |
| 128 | + # Simple 2x2 grid |
| 129 | + vertices = [ |
| 130 | + [0, 0.0, 0.0], |
| 131 | + [1, 1.0, 0.0], |
| 132 | + [2, 1.0, 1.0], |
| 133 | + [3, 0.0, 1.0], |
| 134 | + [4, 0.5, 0.5], # Center point |
| 135 | + ] |
| 136 | + |
| 137 | + cell2d = [ |
| 138 | + [0, 0.5, 0.17, 3, 0, 1, 4], |
| 139 | + [1, 0.83, 0.5, 3, 1, 2, 4], |
| 140 | + [2, 0.5, 0.83, 3, 2, 3, 4], |
| 141 | + [3, 0.17, 0.5, 3, 3, 0, 4], |
| 142 | + ] |
| 143 | + |
| 144 | + grid = VertexGrid( |
| 145 | + vertices=vertices, |
| 146 | + cell2d=cell2d, |
| 147 | + top=np.ones(4) * 10.0, |
| 148 | + botm=np.zeros(4) |
| 149 | + ) |
| 150 | + |
| 151 | + index = GeospatialIndex(grid) |
| 152 | + |
| 153 | + # Test point at center vertex (shared by all 4 cells) |
| 154 | + result = index.query_point(0.5, 0.5, k=10) |
| 155 | + assert result is not None, "Point at center vertex should be found in one of the cells" |
| 156 | + assert result in [0, 1, 2, 3], f"Result {result} should be one of the 4 center cells" |
| 157 | + |
| 158 | + |
| 159 | +def test_outside_grid(): |
| 160 | + """Test points well outside the grid.""" |
| 161 | + # Simple triangle |
| 162 | + vertices = [ |
| 163 | + [0, 0.0, 0.0], |
| 164 | + [1, 10.0, 0.0], |
| 165 | + [2, 5.0, 10.0], |
| 166 | + ] |
| 167 | + |
| 168 | + cell2d = [ |
| 169 | + [0, 5.0, 3.33, 3, 0, 1, 2], |
| 170 | + ] |
| 171 | + |
| 172 | + grid = VertexGrid( |
| 173 | + vertices=vertices, |
| 174 | + cell2d=cell2d, |
| 175 | + top=np.array([10.0]), |
| 176 | + botm=np.array([0.0]) |
| 177 | + ) |
| 178 | + |
| 179 | + index = GeospatialIndex(grid) |
| 180 | + |
| 181 | + # Points clearly outside |
| 182 | + outside_points = [ |
| 183 | + (-10.0, 0.0), |
| 184 | + (20.0, 0.0), |
| 185 | + (5.0, 20.0), |
| 186 | + (15.0, 15.0), |
| 187 | + ] |
| 188 | + |
| 189 | + for x, y in outside_points: |
| 190 | + result = index.query_point(x, y, k=10) |
| 191 | + assert result is None, f"Point ({x}, {y}) outside grid should return None, got {result}" |
| 192 | + |
| 193 | + |
| 194 | +if __name__ == "__main__": |
| 195 | + print("Running edge case tests...") |
| 196 | + |
| 197 | + print("\n1. Testing thin sliver cells...") |
| 198 | + test_thin_sliver_cell() |
| 199 | + |
| 200 | + print("\n2. Testing boundary points...") |
| 201 | + test_boundary_points() |
| 202 | + |
| 203 | + print("\n3. Testing corner points...") |
| 204 | + test_corner_points() |
| 205 | + |
| 206 | + print("\n4. Testing outside grid points...") |
| 207 | + test_outside_grid() |
| 208 | + |
| 209 | + print("\n✅ All edge case tests passed!") |
0 commit comments