|
| 1 | +"""Tests for pipeline aggregation generator utilities.""" |
| 2 | + |
| 3 | +from pymongo_vectorsearch_utils.pipeline import ( |
| 4 | + combine_pipelines, |
| 5 | + final_hybrid_stage, |
| 6 | + reciprocal_rank_stage, |
| 7 | + text_search_stage, |
| 8 | + vector_search_stage, |
| 9 | +) |
| 10 | + |
| 11 | + |
| 12 | +class TestTextSearchStage: |
| 13 | + def test_basic_text_search(self): |
| 14 | + result = text_search_stage( |
| 15 | + query="test query", search_field="content", index_name="test_index" |
| 16 | + ) |
| 17 | + |
| 18 | + expected = [ |
| 19 | + { |
| 20 | + "$search": { |
| 21 | + "index": "test_index", |
| 22 | + "text": {"query": "test query", "path": "content"}, |
| 23 | + } |
| 24 | + }, |
| 25 | + {"$set": {"score": {"$meta": "searchScore"}}}, |
| 26 | + ] |
| 27 | + |
| 28 | + assert result == expected |
| 29 | + |
| 30 | + def test_text_search_with_multiple_fields(self): |
| 31 | + result = text_search_stage( |
| 32 | + query="test query", search_field=["title", "content"], index_name="test_index" |
| 33 | + ) |
| 34 | + |
| 35 | + assert result[0]["$search"]["text"]["path"] == ["title", "content"] |
| 36 | + |
| 37 | + def test_text_search_with_filter(self): |
| 38 | + filter_dict = {"category": "tech"} |
| 39 | + result = text_search_stage( |
| 40 | + query="test query", search_field="content", index_name="test_index", filter=filter_dict |
| 41 | + ) |
| 42 | + |
| 43 | + assert {"$match": filter_dict} in result |
| 44 | + |
| 45 | + def test_text_search_with_limit(self): |
| 46 | + result = text_search_stage( |
| 47 | + query="test query", search_field="content", index_name="test_index", limit=10 |
| 48 | + ) |
| 49 | + |
| 50 | + assert {"$limit": 10} in result |
| 51 | + |
| 52 | + def test_text_search_without_scores(self): |
| 53 | + result = text_search_stage( |
| 54 | + query="test query", |
| 55 | + search_field="content", |
| 56 | + index_name="test_index", |
| 57 | + include_scores=False, |
| 58 | + ) |
| 59 | + |
| 60 | + score_stage = {"$set": {"score": {"$meta": "searchScore"}}} |
| 61 | + assert score_stage not in result |
| 62 | + |
| 63 | + def test_text_search_with_all_parameters(self): |
| 64 | + filter_dict = {"status": "published"} |
| 65 | + result = text_search_stage( |
| 66 | + query="test query", |
| 67 | + search_field=["title", "description", "content"], |
| 68 | + index_name="test_index", |
| 69 | + limit=20, |
| 70 | + filter=filter_dict, |
| 71 | + include_scores=True, |
| 72 | + ) |
| 73 | + |
| 74 | + assert len(result) == 4 |
| 75 | + assert result[0]["$search"]["index"] == "test_index" |
| 76 | + assert result[1] == {"$match": filter_dict} |
| 77 | + assert result[2] == {"$set": {"score": {"$meta": "searchScore"}}} |
| 78 | + assert result[3] == {"$limit": 20} |
| 79 | + |
| 80 | + |
| 81 | +class TestVectorSearchStage: |
| 82 | + def test_basic_vector_search(self): |
| 83 | + query_vector = [0.1, 0.2, 0.3, 0.4] |
| 84 | + result = vector_search_stage( |
| 85 | + query_vector=query_vector, search_field="embedding", index_name="vector_index" |
| 86 | + ) |
| 87 | + |
| 88 | + expected = { |
| 89 | + "$vectorSearch": { |
| 90 | + "index": "vector_index", |
| 91 | + "path": "embedding", |
| 92 | + "queryVector": query_vector, |
| 93 | + "numCandidates": 40, |
| 94 | + "limit": 4, |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | + assert result == expected |
| 99 | + |
| 100 | + def test_vector_search_with_custom_top_k(self): |
| 101 | + query_vector = [0.1, 0.2, 0.3] |
| 102 | + result = vector_search_stage( |
| 103 | + query_vector=query_vector, search_field="embedding", index_name="vector_index", top_k=10 |
| 104 | + ) |
| 105 | + |
| 106 | + assert result["$vectorSearch"]["limit"] == 10 |
| 107 | + assert result["$vectorSearch"]["numCandidates"] == 100 |
| 108 | + |
| 109 | + def test_vector_search_with_custom_oversampling(self): |
| 110 | + query_vector = [0.1, 0.2, 0.3] |
| 111 | + result = vector_search_stage( |
| 112 | + query_vector=query_vector, |
| 113 | + search_field="embedding", |
| 114 | + index_name="vector_index", |
| 115 | + top_k=5, |
| 116 | + oversampling_factor=20, |
| 117 | + ) |
| 118 | + |
| 119 | + assert result["$vectorSearch"]["numCandidates"] == 100 |
| 120 | + |
| 121 | + def test_vector_search_with_filter(self): |
| 122 | + query_vector = [0.1, 0.2, 0.3] |
| 123 | + filter_dict = {"metadata.category": "science"} |
| 124 | + result = vector_search_stage( |
| 125 | + query_vector=query_vector, |
| 126 | + search_field="embedding", |
| 127 | + index_name="vector_index", |
| 128 | + filter=filter_dict, |
| 129 | + ) |
| 130 | + |
| 131 | + assert result["$vectorSearch"]["filter"] == filter_dict |
| 132 | + |
| 133 | + def test_vector_search_with_all_parameters(self): |
| 134 | + query_vector = [0.1, 0.2, 0.3, 0.4, 0.5] |
| 135 | + filter_dict = {"published": True, "language": "en"} |
| 136 | + result = vector_search_stage( |
| 137 | + query_vector=query_vector, |
| 138 | + search_field="text_embedding", |
| 139 | + index_name="content_vector_index", |
| 140 | + top_k=15, |
| 141 | + filter=filter_dict, |
| 142 | + oversampling_factor=8, |
| 143 | + ) |
| 144 | + |
| 145 | + expected = { |
| 146 | + "$vectorSearch": { |
| 147 | + "index": "content_vector_index", |
| 148 | + "path": "text_embedding", |
| 149 | + "queryVector": query_vector, |
| 150 | + "numCandidates": 120, |
| 151 | + "limit": 15, |
| 152 | + "filter": filter_dict, |
| 153 | + } |
| 154 | + } |
| 155 | + |
| 156 | + assert result == expected |
| 157 | + |
| 158 | + |
| 159 | +class TestCombinePipelines: |
| 160 | + def test_combine_with_empty_pipeline(self): |
| 161 | + pipeline = [] |
| 162 | + stage = [{"$match": {"field": "value"}}] |
| 163 | + |
| 164 | + combine_pipelines(pipeline, stage, "test_collection") |
| 165 | + |
| 166 | + assert pipeline == stage |
| 167 | + |
| 168 | + def test_combine_with_existing_pipeline(self): |
| 169 | + pipeline = [{"$search": {"index": "test"}}] |
| 170 | + stage = [{"$vectorSearch": {"index": "vector_test"}}] |
| 171 | + |
| 172 | + combine_pipelines(pipeline, stage, "test_collection") |
| 173 | + |
| 174 | + expected_union = {"$unionWith": {"coll": "test_collection", "pipeline": stage}} |
| 175 | + |
| 176 | + assert len(pipeline) == 2 |
| 177 | + assert pipeline[1] == expected_union |
| 178 | + |
| 179 | + def test_combine_modifies_in_place(self): |
| 180 | + original_pipeline = [{"$match": {"test": True}}] |
| 181 | + pipeline = original_pipeline.copy() |
| 182 | + stage = [{"$project": {"field": 1}}] |
| 183 | + |
| 184 | + combine_pipelines(pipeline, stage, "collection") |
| 185 | + |
| 186 | + assert len(original_pipeline) == 1 |
| 187 | + assert len(pipeline) == 2 |
| 188 | + |
| 189 | + |
| 190 | +class TestReciprocalRankStage: |
| 191 | + def test_basic_reciprocal_rank(self): |
| 192 | + result = reciprocal_rank_stage(score_field="text_score") |
| 193 | + |
| 194 | + expected = [ |
| 195 | + {"$group": {"_id": None, "docs": {"$push": "$$ROOT"}}}, |
| 196 | + {"$unwind": {"path": "$docs", "includeArrayIndex": "rank"}}, |
| 197 | + { |
| 198 | + "$addFields": { |
| 199 | + "docs.text_score": {"$divide": [1.0, {"$add": ["$rank", 0, 1]}]}, |
| 200 | + "docs.rank": "$rank", |
| 201 | + "_id": "$docs._id", |
| 202 | + } |
| 203 | + }, |
| 204 | + {"$replaceRoot": {"newRoot": "$docs"}}, |
| 205 | + ] |
| 206 | + |
| 207 | + assert result == expected |
| 208 | + |
| 209 | + def test_reciprocal_rank_with_penalty(self): |
| 210 | + result = reciprocal_rank_stage(score_field="vector_score", penalty=60) |
| 211 | + |
| 212 | + add_fields_stage = result[2]["$addFields"] |
| 213 | + divide_expr = add_fields_stage["docs.vector_score"]["$divide"] |
| 214 | + add_expr = divide_expr[1]["$add"] |
| 215 | + |
| 216 | + assert add_expr == ["$rank", 60, 1] |
| 217 | + |
| 218 | + def test_reciprocal_rank_custom_score_field(self): |
| 219 | + result = reciprocal_rank_stage(score_field="custom_score_field") |
| 220 | + |
| 221 | + add_fields_stage = result[2]["$addFields"] |
| 222 | + assert "docs.custom_score_field" in add_fields_stage |
| 223 | + |
| 224 | + def test_reciprocal_rank_with_kwargs(self): |
| 225 | + result = reciprocal_rank_stage(score_field="test_score", penalty=10, extra_param="ignored") |
| 226 | + |
| 227 | + assert len(result) == 4 |
| 228 | + assert result[2]["$addFields"]["docs.test_score"]["$divide"][1]["$add"] == ["$rank", 10, 1] |
| 229 | + |
| 230 | + |
| 231 | +class TestFinalHybridStage: |
| 232 | + def test_basic_final_hybrid(self): |
| 233 | + result = final_hybrid_stage(scores_fields=["text_score", "vector_score"], limit=10) |
| 234 | + |
| 235 | + expected = [ |
| 236 | + {"$group": {"_id": "$_id", "docs": {"$mergeObjects": "$$ROOT"}}}, |
| 237 | + {"$replaceRoot": {"newRoot": "$docs"}}, |
| 238 | + { |
| 239 | + "$set": { |
| 240 | + "text_score": {"$ifNull": ["$text_score", 0]}, |
| 241 | + "vector_score": {"$ifNull": ["$vector_score", 0]}, |
| 242 | + } |
| 243 | + }, |
| 244 | + {"$addFields": {"score": {"$add": ["$text_score", "$vector_score"]}}}, |
| 245 | + {"$sort": {"score": -1}}, |
| 246 | + {"$limit": 10}, |
| 247 | + ] |
| 248 | + |
| 249 | + assert result == expected |
| 250 | + |
| 251 | + def test_final_hybrid_single_score(self): |
| 252 | + result = final_hybrid_stage(scores_fields=["single_score"], limit=5) |
| 253 | + |
| 254 | + set_stage = result[2]["$set"] |
| 255 | + assert set_stage == {"single_score": {"$ifNull": ["$single_score", 0]}} |
| 256 | + |
| 257 | + add_fields_stage = result[3]["$addFields"] |
| 258 | + assert add_fields_stage == {"score": {"$add": ["$single_score"]}} |
| 259 | + |
| 260 | + assert result[5] == {"$limit": 5} |
| 261 | + |
| 262 | + def test_final_hybrid_multiple_scores(self): |
| 263 | + scores = ["text_score", "vector_score", "semantic_score"] |
| 264 | + result = final_hybrid_stage(scores_fields=scores, limit=20) |
| 265 | + |
| 266 | + set_stage = result[2]["$set"] |
| 267 | + for score in scores: |
| 268 | + assert score in set_stage |
| 269 | + assert set_stage[score] == {"$ifNull": [f"${score}", 0]} |
| 270 | + |
| 271 | + add_fields_stage = result[3]["$addFields"] |
| 272 | + expected_add = {"$add": [f"${score}" for score in scores]} |
| 273 | + assert add_fields_stage["score"] == expected_add |
| 274 | + |
| 275 | + def test_final_hybrid_with_kwargs(self): |
| 276 | + result = final_hybrid_stage(scores_fields=["test_score"], limit=15, extra_param="ignored") |
| 277 | + |
| 278 | + assert len(result) == 6 |
| 279 | + assert result[5] == {"$limit": 15} |
| 280 | + |
| 281 | + |
| 282 | +class TestPipelineIntegration: |
| 283 | + def test_text_and_vector_pipeline_components(self): |
| 284 | + text_pipeline = text_search_stage( |
| 285 | + query="machine learning", search_field="content", index_name="text_index", limit=10 |
| 286 | + ) |
| 287 | + |
| 288 | + vector_stage = vector_search_stage( |
| 289 | + query_vector=[0.1, 0.2, 0.3], |
| 290 | + search_field="embedding", |
| 291 | + index_name="vector_index", |
| 292 | + top_k=10, |
| 293 | + ) |
| 294 | + |
| 295 | + assert isinstance(text_pipeline, list) |
| 296 | + assert isinstance(vector_stage, dict) |
| 297 | + assert "$search" in text_pipeline[0] |
| 298 | + assert "$vectorSearch" in vector_stage |
| 299 | + |
| 300 | + def test_rrf_and_final_stages_compatibility(self): |
| 301 | + rrf_stage = reciprocal_rank_stage(score_field="text_score") |
| 302 | + final_stage = final_hybrid_stage(scores_fields=["text_score", "vector_score"], limit=5) |
| 303 | + |
| 304 | + rrf_field_creation = rrf_stage[2]["$addFields"] |
| 305 | + assert "docs.text_score" in rrf_field_creation |
| 306 | + |
| 307 | + final_set_stage = final_stage[2]["$set"] |
| 308 | + assert "text_score" in final_set_stage |
0 commit comments