@@ -992,15 +992,17 @@ Atlas Vector Search
992
992
:atlas:`Limitations </atlas-vector-search/vector-search-stage/#limitations>`
993
993
in the MongoDB Atlas documentation.
994
994
995
- Use the ``vectorSearch()`` method to create a :atlas:`$vectorSearch </atlas-vector-search/vector-search-stage/>`
995
+ Use the ``vectorSearch()`` method to create a :atlas:`$vectorSearch
996
+ </atlas-vector-search/vector-search-stage/>`
996
997
pipeline stage that specifies a **semantic search**. A semantic search is
997
998
a type of search which locates information that is similar in meaning.
998
999
999
1000
To use this feature, you must set up a vector search index and index your
1000
1001
vector embeddings. To learn about how to programmatically create a
1001
1002
vector search index, see the :ref:`java-search-indexes` section in the Indexes guide. To
1002
1003
learn more about vector embeddings, see
1003
- :atlas:`How to Index Vector Embeddings for Vector Search </atlas-search/field-types/knn-vector/>`.
1004
+ :atlas:`How to Index Vector Embeddings for Vector Search
1005
+ </atlas-search/field-types/knn-vector/>`.
1004
1006
1005
1007
The following example shows how to build an aggregation pipeline that uses the
1006
1008
``vectorSearch()`` and ``project()`` methods to compute a vector search score:
@@ -1020,5 +1022,7 @@ preceding aggregation pipeline:
1020
1022
:language: java
1021
1023
:dedent:
1022
1024
1023
- Learn more about this helper from the
1024
- `vectorSearch() <{+api+}//apidocs/mongodb-driver-core/com/mongodb/client/model/Aggregates.html#vectorSearch(com.mongodb.client.model.search.FieldSearchPath,java.lang.Iterable,java.lang.String,long,long)>`__ API documentation.
1025
+ Learn more about this helper in the
1026
+ `vectorSearch()
1027
+ <{+api+}/apidocs/mongodb-driver-core/com/mongodb/client/model/Aggregates.html#vectorSearch(com.mongodb.client.model.search.FieldSearchPath,java.lang.Iterable,java.lang.String,long,com.mongodb.client.model.search.VectorSearchOptions)>`__
1028
+ API documentation.
0 commit comments