|
| 1 | +.. _django-raw-queries: |
| 2 | + |
| 3 | +============================ |
| 4 | +Perform Raw Database Queries |
| 5 | +============================ |
| 6 | + |
| 7 | +.. contents:: On this page |
| 8 | + :local: |
| 9 | + :backlinks: none |
| 10 | + :depth: 2 |
| 11 | + :class: singlecol |
| 12 | + |
| 13 | +.. facet:: |
| 14 | + :name: genre |
| 15 | + :values: reference |
| 16 | + |
| 17 | +.. meta:: |
| 18 | + :keywords: number, amount, estimation, code example |
| 19 | + |
| 20 | +Overview |
| 21 | +--------- |
| 22 | + |
| 23 | +In this guide, you can learn how to use {+django-odm+} to run |
| 24 | +raw queries on your MongoDB database. Raw queries allow you to |
| 25 | +query the database by using MongoDB's aggregation pipeline syntax |
| 26 | +rather than Django methods. |
| 27 | + |
| 28 | +The Django QuerySet API provides a ``QuerySet.raw()`` method, which allows |
| 29 | +you to perform raw SQL queries on relational databases. {+django-odm+} |
| 30 | +does not support the ``raw()`` method. Instead, the ODM provides the |
| 31 | +``QuerySet.raw_aggregate()`` method, which you can use to send commands |
| 32 | +to the database in pipeline stages. |
| 33 | + |
| 34 | +Sample Data |
| 35 | +~~~~~~~~~~~ |
| 36 | + |
| 37 | +The examples in this guide use the ``Movie`` model, which represents the |
| 38 | +``sample_mflix.movies`` collection from the :atlas:`Atlas sample datasets </sample-data>`. |
| 39 | +The ``Movie`` model class has the following definition: |
| 40 | + |
| 41 | +.. code-block:: python |
| 42 | + |
| 43 | + from django.db import models |
| 44 | + from django_mongodb_backend.fields import EmbeddedModelField, ArrayField |
| 45 | + from django_mongodb_backend.managers import MongoManager |
| 46 | + |
| 47 | + class Movie(models.Model): |
| 48 | + title = models.CharField(max_length=200) |
| 49 | + plot = models.TextField(null=True) |
| 50 | + runtime = models.IntegerField(default=0) |
| 51 | + released = models.DateTimeField("release date", null=True) |
| 52 | + awards = EmbeddedModelField(Award) |
| 53 | + genres = ArrayField(models.CharField(max_length=100), blank=True) |
| 54 | + objects = MongoManager() |
| 55 | + |
| 56 | + class Meta: |
| 57 | + db_table = "movies" |
| 58 | + |
| 59 | + def __str__(self): |
| 60 | + return self.title |
| 61 | + |
| 62 | +To learn how to create a Django application that uses a similar ``Movie`` |
| 63 | +model to interact with MongoDB documents, visit the :ref:`django-get-started` |
| 64 | +tutorial. |
| 65 | + |
| 66 | +.. _django-raw-queries-run: |
| 67 | + |
| 68 | +Perform a Raw Query |
| 69 | +------------------- |
| 70 | + |
| 71 | +To run a raw database query, pass an aggregation pipeline |
| 72 | +to the ``QuerySet.raw_aggregate()`` method. Aggregation pipelines |
| 73 | +contain one or more stages that provide instructions on how to |
| 74 | +process documents. After calling the ``raw_aggregate()`` method, |
| 75 | +{+django-odm+} passes your pipeline to the ``pymongo.collection.Collection.aggregate()`` |
| 76 | +method and returns the query results as model objects. |
| 77 | + |
| 78 | +.. tip:: |
| 79 | + |
| 80 | + To learn more about constructing aggregation pipelines, see |
| 81 | + :manual:`Aggregation Pipeline </core/aggregation-pipeline/>` |
| 82 | + in the {+mdb-server+} manual. |
| 83 | + |
| 84 | +This section shows how to use the ``raw_aggregate()`` method |
| 85 | +to perform the following tasks: |
| 86 | + |
| 87 | +- :ref:`django-raw-queries-filter-group` |
| 88 | +- :ref:`django-raw-queries-search` |
| 89 | +- :ref:`django-raw-queries-geospatial` |
| 90 | + |
| 91 | +.. _django-raw-queries-filter-group: |
| 92 | + |
| 93 | +Filter and Project Document Fields |
| 94 | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 95 | + |
| 96 | +This example runs a raw database query by calling the |
| 97 | +``raw_aggregate()`` method on your ``Movie`` objects, |
| 98 | +which represent documents in the ``sample_mflix.movies`` MongoDB |
| 99 | +collection. The code passes the following aggregation pipeline stages |
| 100 | +to ``raw_aggregate()``: |
| 101 | + |
| 102 | +- ``$match``: Filters for documents that have a ``title`` |
| 103 | + field value of ``"The Parent Trap"`` |
| 104 | + |
| 105 | +- ``$project``: Includes the ``title`` and ``released`` fields |
| 106 | + of the returned model objects |
| 107 | + |
| 108 | +.. io-code-block:: |
| 109 | + :copyable: true |
| 110 | + |
| 111 | + .. input:: |
| 112 | + :language: python |
| 113 | + |
| 114 | + from sample_mflix.models import Movie |
| 115 | + |
| 116 | + movies = Movie.objects.raw_aggregate([ |
| 117 | + {"$match": {"title": "The Parent Trap"}}, |
| 118 | + {"$project": { |
| 119 | + "title": 1, |
| 120 | + "released": 1 |
| 121 | + } |
| 122 | + }]) |
| 123 | + |
| 124 | + for m in movies: |
| 125 | + print(f"Plot of {m.title}, released on {m.released}: {m.plot}\n") |
| 126 | + |
| 127 | + .. output:: |
| 128 | + :language: javascript |
| 129 | + :visible: false |
| 130 | + |
| 131 | + Plot of The Parent Trap, released on 1961-06-21 00:00:00+00:00: |
| 132 | + Teenage twin girls swap places and scheme to reunite their divorced parents. |
| 133 | + |
| 134 | + Plot of The Parent Trap, released on 1998-07-29 00:00:00+00:00: |
| 135 | + Identical twins, separated at birth and each raised by one of their |
| 136 | + biological parents, discover each other for the first time at summer |
| 137 | + camp and make a plan to bring their wayward parents back together. |
| 138 | + |
| 139 | +.. note:: |
| 140 | + |
| 141 | + The ``raw_aggregate()`` method returns deferred model instances, |
| 142 | + which means that you can load fields omitted by the ``$project`` stage |
| 143 | + on demand. In the preceding example, the query retrieves the ``title`` |
| 144 | + and ``released`` fields. The print statement runs a separate query |
| 145 | + to retrieve the ``plot`` field. |
| 146 | + |
| 147 | +.. _django-raw-queries-search: |
| 148 | + |
| 149 | +Run an Atlas Search Query |
| 150 | +~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 151 | + |
| 152 | +You can run Atlas Search queries on your database to perform |
| 153 | +fine-grained text searches. These queries provide advanced search |
| 154 | +functionality, such as matching text phrases, scoring results for |
| 155 | +relevance, and highlighting matches. |
| 156 | + |
| 157 | +To specify an Atlas Search query, create an Atlas Search index |
| 158 | +that covers the fields you want to query. Then, specify the ``$search`` |
| 159 | +or ``$searchMeta`` stage in an aggregation pipeline parameter to |
| 160 | +the ``raw_aggregate()`` method. |
| 161 | + |
| 162 | +.. important:: |
| 163 | + |
| 164 | + You cannot use {+django-odm+} to create Atlas Search indexes. |
| 165 | + |
| 166 | + For instructions on using the PyMongo driver to create an Atlas |
| 167 | + Search index, see :driver:`Atlas Search and Vector Search Indexes |
| 168 | + </python/pymongo-driver/current/indexes/atlas-search-index/>` in |
| 169 | + the PyMongo documentation. |
| 170 | + |
| 171 | + For instructions on alternative methods of creating search indexes, |
| 172 | + see :atlas:`Create an Atlas Search Index </atlas-search/tutorial/create-index/>` |
| 173 | + in the Atlas documentation. |
| 174 | + |
| 175 | +This example runs an Atlas Search query by passing the ``$search`` pipeline |
| 176 | +stage to the ``raw_aggregate()`` method. The code performs the following |
| 177 | +actions: |
| 178 | + |
| 179 | +- Specifies the Atlas Search index that covers the ``plot`` field |
| 180 | +- Queries for documents whose ``plot`` values contain the string |
| 181 | + ``"whirlwind romance"`` with no more than ``3`` words in between |
| 182 | +- Returns portions of the ``plot`` string values that match |
| 183 | + the query, along with metadata that indicates where the matches |
| 184 | + occurred |
| 185 | +- Includes the ``title`` field and the ``highlight``, or matching text, |
| 186 | + of each result |
| 187 | + |
| 188 | +.. io-code-block:: |
| 189 | + :copyable: true |
| 190 | + |
| 191 | + .. input:: |
| 192 | + :language: python |
| 193 | + |
| 194 | + movies = Movie.objects.raw_aggregate([ |
| 195 | + { |
| 196 | + "$search": { |
| 197 | + "index": "<search-index-name>", |
| 198 | + "phrase": { |
| 199 | + "path": "plot", |
| 200 | + "query": "whirlwind romance", |
| 201 | + "slop": 3 |
| 202 | + }, |
| 203 | + "highlight": { |
| 204 | + "path": "plot" |
| 205 | + } |
| 206 | + } |
| 207 | + }, |
| 208 | + { |
| 209 | + "$project": { |
| 210 | + "title": 1, |
| 211 | + "highlight": {"$meta": "searchHighlights"} |
| 212 | + } |
| 213 | + } |
| 214 | + ]) |
| 215 | + |
| 216 | + for m in movies: |
| 217 | + print(f"Title: {m.title}, text match details: {m.highlight}\n") |
| 218 | + |
| 219 | + .. output:: |
| 220 | + :language: javascript |
| 221 | + :visible: false |
| 222 | + |
| 223 | + Title: Tokyo Fiancèe, text match details: [{'score': 2.3079638481140137, 'path': 'plot', |
| 224 | + 'texts': [{'value': 'A young Japanophile Belgian woman in Tokyo falls into a ', 'type': 'text'}, |
| 225 | + {'value': 'whirlwind', 'type': 'hit'}, {'value': ' ', 'type': 'text'}, {'value': 'romance', |
| 226 | + 'type': 'hit'}, {'value': ' with a Francophile Japanese student.', 'type': 'text'}]}] |
| 227 | + |
| 228 | + Title: Designing Woman, text match details: [{'score': 2.3041324615478516, 'path': 'plot', |
| 229 | + 'texts': [{'value': 'A sportswriter and a fashion-designer marry after a ', 'type': 'text'}, |
| 230 | + {'value': 'whirlwind', 'type': 'hit'}, {'value': ' ', 'type': 'text'}, {'value': 'romance', |
| 231 | + 'type': 'hit'}, {'value': ', and discover they have little in common.', 'type': 'text'}]}] |
| 232 | + |
| 233 | + Title: Vivacious Lady, text match details: [{'score': 2.220963478088379, 'path': 'plot', |
| 234 | + 'texts': [{'value': 'On a quick trip to the city, young university professor Peter Morgan |
| 235 | + falls in love with nightclub performer Francey Brent and marries her after a ', 'type': 'text'}, |
| 236 | + {'value': 'whirlwind', 'type': 'hit'}, {'value': ' ', 'type': 'text'}, {'value': 'romance', |
| 237 | + 'type': 'hit'}, {'value': '. ', 'type': 'text'}]}] |
| 238 | + |
| 239 | + Title: Ek Hasina Thi, text match details: [{'score': 3.11773419380188, 'path': 'plot', 'texts': |
| 240 | + [{'value': 'The ', 'type': 'text'}, {'value': 'whirlwind', 'type': 'hit'}, {'value': ' ', 'type': |
| 241 | + 'text'}, {'value': 'romance', 'type': 'hit'}, {'value': ' turns sour when she is framed for his |
| 242 | + underworld crimes. ', 'type': 'text'}]}] |
| 243 | + |
| 244 | + Title: Kick, text match details: [{'score': 2.00649356842041, 'path': 'plot', 'texts': [{'value': |
| 245 | + 'An adrenaline junkie walks away from a ', 'type': 'text'}, {'value': 'whirlwind', 'type': 'hit'}, |
| 246 | + {'value': ' ', 'type': 'text'}, {'value': 'romance', 'type': 'hit'}, {'value': ' and embraces a new |
| 247 | + life as a thief, though he soon finds himself pursued by veteran police officer and engaged in a turf |
| 248 | + war with a local gangster.', 'type': 'text'}]}] |
| 249 | + |
| 250 | + Title: A Tale of Winter, text match details: [{'score': 3.3978850841522217, 'path': 'plot', 'texts': |
| 251 | + [{'value': 'Felicie and Charles have a serious if ', 'type': 'text'}, {'value': 'whirlwind', 'type': |
| 252 | + 'hit'}, {'value': ' holiday ', 'type': 'text'}, {'value': 'romance', 'type': 'hit'}, {'value': '. ', |
| 253 | + 'type': 'text'}]}] |
| 254 | + |
| 255 | +.. important:: |
| 256 | + |
| 257 | + When running the preceding example, ensure that you replace |
| 258 | + the ``<search-index-name>`` placeholder with the name of your |
| 259 | + Atlas Search index that covers the ``plot`` field. |
| 260 | + |
| 261 | +.. _django-raw-queries-geospatial: |
| 262 | + |
| 263 | +Query Geospatial Data |
| 264 | +~~~~~~~~~~~~~~~~~~~~~ |
| 265 | + |
| 266 | + |
| 267 | + |
| 268 | +Additional Information |
| 269 | +---------------------- |
| 270 | + |
| 271 | +To view more examples that use the ``raw_aggregate()`` method, |
| 272 | +see `QuerySet API Reference <{+django-api+}querysets.htmln>`__ |
| 273 | +in the {+django-odm+} API documentation. |
| 274 | + |
| 275 | +To learn more about running aggregation operations, see |
| 276 | +:manual:`Aggregation Operations </aggregation/>` |
| 277 | +in the {+mdb-server+} manual. |
| 278 | + |
| 279 | +To learn more about Atlas Search, see :atlas:`Atlas Search </atlas-search>` |
| 280 | +in the Atlas documentation. |
0 commit comments