-Covariant Hamiltonian optimization for motion planning (CHOMP) is a gradient-based trajectory optimization procedure that makes many everyday motion planning problems both simple and trainable (Ratliff et al., 2009c). While most high-dimensional motion planners separate trajectory generation into distinct planning and optimization stages, this algorithm capitalizes on covariant gradient and functional gradient approaches to the optimization stage to design a motion planning algorithm based entirely on trajectory optimization. Given an infeasible naive trajectory, CHOMP reacts to the surrounding environment to quickly pull the trajectory out of collision while simultaneously optimizing dynamical quantities such as joint velocities and accelerations. It rapidly converges to a smooth collision-free trajectory that can be executed efficiently on the robot. Integration into latest version of MoveIt is `work in progress <https://github.com/ros-planning/moveit/issues/702>`_. `More info <http://www.nathanratliff.com/thesis-research/chomp>`_
0 commit comments