@@ -162,6 +162,7 @@ enum llm_arch {
162162 LLM_ARCH_MINICPM,
163163 LLM_ARCH_GEMMA,
164164 LLM_ARCH_GEMMA2,
165+ LLM_ARCH_GEMMA3,
165166 LLM_ARCH_STARCODER2,
166167 LLM_ARCH_MAMBA,
167168 LLM_ARCH_XVERSE,
@@ -211,6 +212,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
211212 { LLM_ARCH_MINICPM, "minicpm" },
212213 { LLM_ARCH_GEMMA, "gemma" },
213214 { LLM_ARCH_GEMMA2, "gemma2" },
215+ { LLM_ARCH_GEMMA3, "gemma3" },
214216 { LLM_ARCH_STARCODER2, "starcoder2" },
215217 { LLM_ARCH_MAMBA, "mamba" },
216218 { LLM_ARCH_XVERSE, "xverse" },
@@ -1008,6 +1010,26 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
10081010 { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
10091011 },
10101012 },
1013+ {
1014+ LLM_ARCH_GEMMA3,
1015+ {
1016+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
1017+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
1018+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
1019+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
1020+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
1021+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
1022+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
1023+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
1024+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
1025+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
1026+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
1027+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
1028+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
1029+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
1030+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
1031+ },
1032+ },
10111033 {
10121034 LLM_ARCH_STARCODER2,
10131035 {
@@ -1935,6 +1957,7 @@ struct llama_hparams {
19351957 uint32_t n_layer;
19361958 uint32_t n_rot;
19371959 uint32_t n_swa = 0; // sliding window attention (SWA)
1960+ uint32_t n_swa_pattern = 1; // by default, all layers use non-sliding-window attention
19381961 uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
19391962 uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
19401963 uint32_t n_expert = 0;
@@ -1962,7 +1985,9 @@ struct llama_hparams {
19621985
19631986 float rope_attn_factor = 1.0f;
19641987 float rope_freq_base_train;
1988+ float rope_freq_base_train_swa;
19651989 float rope_freq_scale_train;
1990+ float rope_freq_scale_train_swa;
19661991 uint32_t n_ctx_orig_yarn;
19671992 float rope_yarn_log_mul;
19681993
@@ -2001,6 +2026,7 @@ struct llama_hparams {
20012026 if (this->n_layer != other.n_layer) return true;
20022027 if (this->n_rot != other.n_rot) return true;
20032028 if (this->n_swa != other.n_swa) return true;
2029+ if (this->n_swa_pattern != other.n_swa_pattern) return true;
20042030 if (this->n_embd_head_k != other.n_embd_head_k) return true;
20052031 if (this->n_embd_head_v != other.n_embd_head_v) return true;
20062032 if (this->n_expert != other.n_expert) return true;
@@ -2035,6 +2061,8 @@ struct llama_hparams {
20352061 if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
20362062 if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
20372063 if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
2064+ if (!is_float_close(this->rope_freq_base_train_swa, other.rope_freq_base_train_swa, EPSILON)) return true;
2065+ if (!is_float_close(this->rope_freq_scale_train_swa, other.rope_freq_scale_train_swa, EPSILON)) return true;
20382066 if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
20392067 if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
20402068 if (!is_float_close(this->f_residual_scale, other.f_residual_scale, EPSILON)) return true;
@@ -4446,6 +4474,10 @@ static void llm_load_hparams(
44464474 }
44474475 hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
44484476
4477+ // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
4478+ hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
4479+ hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
4480+
44494481 ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
44504482
44514483 // non-transformer models do not have attention heads
@@ -4779,6 +4811,8 @@ static void llm_load_hparams(
47794811 case LLM_ARCH_GEMMA2:
47804812 {
47814813 hparams.n_swa = 4096; // default value of gemma 2
4814+ hparams.n_swa_pattern = 2;
4815+
47824816 ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
47834817 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
47844818 ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
@@ -4792,6 +4826,28 @@ static void llm_load_hparams(
47924826 default: model.type = e_model::MODEL_UNKNOWN;
47934827 }
47944828 } break;
4829+ case LLM_ARCH_GEMMA3:
4830+ {
4831+ hparams.n_swa_pattern = 6;
4832+
4833+ hparams.rope_freq_base_train_swa = 10000.0f;
4834+ hparams.rope_freq_scale_train_swa = 1.0f;
4835+
4836+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
4837+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
4838+
4839+ switch (hparams.n_layer) {
4840+ case 26: model.type = e_model::MODEL_1B; break;
4841+ case 34: model.type = e_model::MODEL_4B; break;
4842+ case 48: model.type = e_model::MODEL_12B; break;
4843+ case 62: model.type = e_model::MODEL_27B; break;
4844+ default: model.type = e_model::MODEL_UNKNOWN;
4845+ }
4846+
4847+ hparams.f_attention_scale = model.type == e_model::MODEL_27B
4848+ ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
4849+ : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
4850+ } break;
47954851 case LLM_ARCH_STARCODER2:
47964852 {
47974853 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -6844,6 +6900,38 @@ static bool llm_load_tensors(
68446900 layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
68456901 }
68466902 } break;
6903+ case LLM_ARCH_GEMMA3:
6904+ {
6905+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
6906+
6907+ // output
6908+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
6909+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
6910+
6911+ for (int i = 0; i < n_layer; ++i) {
6912+ ggml_context * ctx_layer = ctx_for_layer(i);
6913+ ggml_context * ctx_split = ctx_for_layer_split(i);
6914+
6915+ auto & layer = model.layers[i];
6916+
6917+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
6918+
6919+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
6920+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
6921+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
6922+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
6923+
6924+ layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
6925+ layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
6926+ layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
6927+
6928+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
6929+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
6930+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
6931+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
6932+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
6933+ }
6934+ } break;
68476935 case LLM_ARCH_STARCODER2:
68486936 {
68496937 model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -11727,7 +11815,8 @@ struct llm_build_context {
1172711815
1172811816 for (int il = 0; il < n_layer; ++il) {
1172911817 // (il % 2) layers use SWA
11730- struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask;
11818+ const bool is_swa = il % hparams.n_swa_pattern < (hparams.n_swa_pattern - 1);
11819+ struct ggml_tensor * KQ_mask_l = is_swa ? KQ_mask_swa : KQ_mask;
1173111820
1173211821 // norm
1173311822 cur = llm_build_norm(ctx0, inpL, hparams,
@@ -11839,6 +11928,142 @@ struct llm_build_context {
1183911928 return gf;
1184011929 }
1184111930
11931+ struct ggml_cgraph * build_gemma3() {
11932+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
11933+
11934+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
11935+
11936+ struct ggml_tensor * cur;
11937+ struct ggml_tensor * inpL;
11938+
11939+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
11940+
11941+ // TODO: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
11942+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
11943+ cb(inpL, "inp_scaled", -1);
11944+
11945+ // inp_pos - contains the positions
11946+ struct ggml_tensor * inp_pos = build_inp_pos();
11947+
11948+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask(true);
11949+ struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);
11950+
11951+ for (int il = 0; il < n_layer; ++il) {
11952+ const bool is_swa = il % hparams.n_swa_pattern < (hparams.n_swa_pattern - 1);
11953+
11954+ const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
11955+ const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
11956+
11957+ struct ggml_tensor * KQ_mask_l = is_swa ? KQ_mask_swa : KQ_mask;
11958+
11959+ // norm
11960+ cur = llm_build_norm(ctx0, inpL, hparams,
11961+ model.layers[il].attn_norm, NULL,
11962+ LLM_NORM_RMS, cb, il);
11963+ cb(cur, "attn_norm", il);
11964+
11965+ // self-attention
11966+ {
11967+ // compute Q and K and RoPE them
11968+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
11969+ cb(Qcur, "Qcur", il);
11970+
11971+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
11972+ cb(Kcur, "Kcur", il);
11973+
11974+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
11975+ cb(Vcur, "Vcur", il);
11976+
11977+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens);
11978+ Qcur = llm_build_norm(ctx0, Qcur, hparams,
11979+ model.layers[il].attn_q_norm, NULL,
11980+ LLM_NORM_RMS, cb, il);
11981+ cb(Qcur, "Qcur_normed", il);
11982+
11983+ Qcur = ggml_rope_ext(
11984+ ctx0, Qcur, inp_pos, nullptr,
11985+ n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
11986+ ext_factor, attn_factor, beta_fast, beta_slow);
11987+ cb(Qcur, "Qcur", il);
11988+
11989+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens);
11990+ Kcur = llm_build_norm(ctx0, Kcur, hparams,
11991+ model.layers[il].attn_k_norm, NULL,
11992+ LLM_NORM_RMS, cb, il);
11993+ cb(Kcur, "Kcur_normed", il);
11994+
11995+ Kcur = ggml_rope_ext(
11996+ ctx0, Kcur, inp_pos, nullptr,
11997+ n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
11998+ ext_factor, attn_factor, beta_fast, beta_slow);
11999+ cb(Kcur, "Kcur", il);
12000+
12001+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
12002+ model.layers[il].wo, NULL,
12003+ Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, hparams.f_attention_scale, cb, il);
12004+ }
12005+
12006+ cur = llm_build_norm(ctx0, cur, hparams,
12007+ model.layers[il].attn_post_norm, NULL,
12008+ LLM_NORM_RMS, cb, il);
12009+ cb(cur, "attn_post_norm", il);
12010+
12011+ if (il == n_layer - 1) {
12012+ // skip computing output for unused tokens
12013+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
12014+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
12015+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
12016+ }
12017+
12018+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
12019+ cb(sa_out, "sa_out", il);
12020+
12021+ cur = llm_build_norm(ctx0, sa_out, hparams,
12022+ model.layers[il].ffn_norm, NULL,
12023+ LLM_NORM_RMS, cb, il);
12024+ cb(cur, "ffn_norm", il);
12025+
12026+ // feed-forward network
12027+ {
12028+ cur = llm_build_ffn(ctx0, lctx, cur,
12029+ model.layers[il].ffn_up, NULL, NULL,
12030+ model.layers[il].ffn_gate, NULL, NULL,
12031+ model.layers[il].ffn_down, NULL, NULL,
12032+ NULL,
12033+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
12034+ cb(cur, "ffn_out", il);
12035+ }
12036+
12037+ cur = llm_build_norm(ctx0, cur, hparams,
12038+ model.layers[il].ffn_post_norm, NULL,
12039+ LLM_NORM_RMS, cb, -1);
12040+ cb(cur, "ffn_post_norm", -1);
12041+
12042+ cur = ggml_add(ctx0, cur, sa_out);
12043+ cur = lctx.cvec.apply_to(ctx0, cur, il);
12044+ cb(cur, "l_out", il);
12045+
12046+ // input for next layer
12047+ inpL = cur;
12048+ }
12049+
12050+ cur = inpL;
12051+
12052+ cur = llm_build_norm(ctx0, cur, hparams,
12053+ model.output_norm, NULL,
12054+ LLM_NORM_RMS, cb, -1);
12055+
12056+ cb(cur, "result_norm", -1);
12057+
12058+ // lm_head
12059+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
12060+
12061+ cb(cur, "result_output", -1);
12062+
12063+ ggml_build_forward_expand(gf, cur);
12064+
12065+ return gf;
12066+ }
1184212067
1184312068 struct ggml_cgraph * build_starcoder2() {
1184412069 struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
@@ -14136,6 +14361,10 @@ static struct ggml_cgraph * llama_build_graph(
1413614361 {
1413714362 result = llm.build_gemma2();
1413814363 } break;
14364+ case LLM_ARCH_GEMMA3:
14365+ {
14366+ result = llm.build_gemma3();
14367+ } break;
1413914368 case LLM_ARCH_STARCODER2:
1414014369 {
1414114370 result = llm.build_starcoder2();
@@ -17315,6 +17544,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
1731517544 case LLM_ARCH_PHI3:
1731617545 case LLM_ARCH_GEMMA:
1731717546 case LLM_ARCH_GEMMA2:
17547+ case LLM_ARCH_GEMMA3:
1731817548 case LLM_ARCH_STARCODER2:
1731917549 case LLM_ARCH_OPENELM:
1732017550 case LLM_ARCH_GPTNEOX:
0 commit comments