@@ -162,6 +162,7 @@ enum llm_arch {
162162 LLM_ARCH_MINICPM,
163163 LLM_ARCH_GEMMA,
164164 LLM_ARCH_GEMMA2,
165+ LLM_ARCH_GEMMA3,
165166 LLM_ARCH_STARCODER2,
166167 LLM_ARCH_MAMBA,
167168 LLM_ARCH_XVERSE,
@@ -211,6 +212,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
211212 { LLM_ARCH_MINICPM, "minicpm" },
212213 { LLM_ARCH_GEMMA, "gemma" },
213214 { LLM_ARCH_GEMMA2, "gemma2" },
215+ { LLM_ARCH_GEMMA3, "gemma3" },
214216 { LLM_ARCH_STARCODER2, "starcoder2" },
215217 { LLM_ARCH_MAMBA, "mamba" },
216218 { LLM_ARCH_XVERSE, "xverse" },
@@ -1008,6 +1010,26 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
10081010 { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
10091011 },
10101012 },
1013+ {
1014+ LLM_ARCH_GEMMA3,
1015+ {
1016+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
1017+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
1018+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
1019+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
1020+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
1021+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
1022+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
1023+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
1024+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
1025+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
1026+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
1027+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
1028+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
1029+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
1030+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
1031+ },
1032+ },
10111033 {
10121034 LLM_ARCH_STARCODER2,
10131035 {
@@ -1962,7 +1984,9 @@ struct llama_hparams {
19621984
19631985 float rope_attn_factor = 1.0f;
19641986 float rope_freq_base_train;
1987+ float rope_freq_base_train_swa;
19651988 float rope_freq_scale_train;
1989+ float rope_freq_scale_train_swa;
19661990 uint32_t n_ctx_orig_yarn;
19671991 float rope_yarn_log_mul;
19681992
@@ -2035,6 +2059,8 @@ struct llama_hparams {
20352059 if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
20362060 if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
20372061 if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
2062+ if (!is_float_close(this->rope_freq_base_train_swa, other.rope_freq_base_train_swa, EPSILON)) return true;
2063+ if (!is_float_close(this->rope_freq_scale_train_swa, other.rope_freq_scale_train_swa, EPSILON)) return true;
20382064 if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
20392065 if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
20402066 if (!is_float_close(this->f_residual_scale, other.f_residual_scale, EPSILON)) return true;
@@ -4446,6 +4472,10 @@ static void llm_load_hparams(
44464472 }
44474473 hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
44484474
4475+ // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
4476+ hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
4477+ hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
4478+
44494479 ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
44504480
44514481 // non-transformer models do not have attention heads
@@ -4792,6 +4822,28 @@ static void llm_load_hparams(
47924822 default: model.type = e_model::MODEL_UNKNOWN;
47934823 }
47944824 } break;
4825+ case LLM_ARCH_GEMMA3:
4826+ {
4827+ hparams.n_swa = 1024;
4828+
4829+ hparams.rope_freq_base_train_swa = 10000.0f;
4830+ hparams.rope_freq_scale_train_swa = 1.0f;
4831+
4832+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
4833+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
4834+
4835+ switch (hparams.n_layer) {
4836+ case 26: model.type = e_model::MODEL_1B; break;
4837+ case 34: model.type = e_model::MODEL_4B; break;
4838+ case 48: model.type = e_model::MODEL_12B; break;
4839+ case 62: model.type = e_model::MODEL_27B; break;
4840+ default: model.type = e_model::MODEL_UNKNOWN;
4841+ }
4842+
4843+ hparams.f_attention_scale = model.type == e_model::MODEL_27B
4844+ ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
4845+ : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
4846+ } break;
47954847 case LLM_ARCH_STARCODER2:
47964848 {
47974849 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -6844,6 +6896,38 @@ static bool llm_load_tensors(
68446896 layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
68456897 }
68466898 } break;
6899+ case LLM_ARCH_GEMMA3:
6900+ {
6901+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
6902+
6903+ // output
6904+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
6905+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
6906+
6907+ for (int i = 0; i < n_layer; ++i) {
6908+ ggml_context * ctx_layer = ctx_for_layer(i);
6909+ ggml_context * ctx_split = ctx_for_layer_split(i);
6910+
6911+ auto & layer = model.layers[i];
6912+
6913+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
6914+
6915+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
6916+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
6917+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
6918+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
6919+
6920+ layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
6921+ layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
6922+ layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
6923+
6924+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
6925+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
6926+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
6927+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
6928+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
6929+ }
6930+ } break;
68476931 case LLM_ARCH_STARCODER2:
68486932 {
68496933 model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -11839,6 +11923,142 @@ struct llm_build_context {
1183911923 return gf;
1184011924 }
1184111925
11926+ struct ggml_cgraph * build_gemma3() {
11927+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
11928+
11929+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
11930+
11931+ struct ggml_tensor * cur;
11932+ struct ggml_tensor * inpL;
11933+
11934+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
11935+
11936+ // TODO: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
11937+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
11938+ cb(inpL, "inp_scaled", -1);
11939+
11940+ // inp_pos - contains the positions
11941+ struct ggml_tensor * inp_pos = build_inp_pos();
11942+
11943+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask(true);
11944+ struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);
11945+
11946+ for (int il = 0; il < n_layer; ++il) {
11947+ const bool is_swa = il % 6 < 5;
11948+
11949+ const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
11950+ const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
11951+
11952+ struct ggml_tensor * KQ_mask_l = is_swa ? KQ_mask_swa : KQ_mask;
11953+
11954+ // norm
11955+ cur = llm_build_norm(ctx0, inpL, hparams,
11956+ model.layers[il].attn_norm, NULL,
11957+ LLM_NORM_RMS, cb, il);
11958+ cb(cur, "attn_norm", il);
11959+
11960+ // self-attention
11961+ {
11962+ // compute Q and K and RoPE them
11963+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
11964+ cb(Qcur, "Qcur", il);
11965+
11966+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
11967+ cb(Kcur, "Kcur", il);
11968+
11969+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
11970+ cb(Vcur, "Vcur", il);
11971+
11972+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens);
11973+ Qcur = llm_build_norm(ctx0, Qcur, hparams,
11974+ model.layers[il].attn_q_norm, NULL,
11975+ LLM_NORM_RMS, cb, il);
11976+ cb(Qcur, "Qcur_normed", il);
11977+
11978+ Qcur = ggml_rope_ext(
11979+ ctx0, Qcur, inp_pos, nullptr,
11980+ n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
11981+ ext_factor, attn_factor, beta_fast, beta_slow);
11982+ cb(Qcur, "Qcur", il);
11983+
11984+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens);
11985+ Kcur = llm_build_norm(ctx0, Kcur, hparams,
11986+ model.layers[il].attn_k_norm, NULL,
11987+ LLM_NORM_RMS, cb, il);
11988+ cb(Kcur, "Kcur_normed", il);
11989+
11990+ Kcur = ggml_rope_ext(
11991+ ctx0, Kcur, inp_pos, nullptr,
11992+ n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
11993+ ext_factor, attn_factor, beta_fast, beta_slow);
11994+ cb(Kcur, "Kcur", il);
11995+
11996+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
11997+ model.layers[il].wo, NULL,
11998+ Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, hparams.f_attention_scale, cb, il);
11999+ }
12000+
12001+ cur = llm_build_norm(ctx0, cur, hparams,
12002+ model.layers[il].attn_post_norm, NULL,
12003+ LLM_NORM_RMS, cb, il);
12004+ cb(cur, "attn_post_norm", il);
12005+
12006+ if (il == n_layer - 1) {
12007+ // skip computing output for unused tokens
12008+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
12009+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
12010+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
12011+ }
12012+
12013+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
12014+ cb(sa_out, "sa_out", il);
12015+
12016+ cur = llm_build_norm(ctx0, sa_out, hparams,
12017+ model.layers[il].ffn_norm, NULL,
12018+ LLM_NORM_RMS, cb, il);
12019+ cb(cur, "ffn_norm", il);
12020+
12021+ // feed-forward network
12022+ {
12023+ cur = llm_build_ffn(ctx0, lctx, cur,
12024+ model.layers[il].ffn_up, NULL, NULL,
12025+ model.layers[il].ffn_gate, NULL, NULL,
12026+ model.layers[il].ffn_down, NULL, NULL,
12027+ NULL,
12028+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
12029+ cb(cur, "ffn_out", il);
12030+ }
12031+
12032+ cur = llm_build_norm(ctx0, cur, hparams,
12033+ model.layers[il].ffn_post_norm, NULL,
12034+ LLM_NORM_RMS, cb, -1);
12035+ cb(cur, "ffn_post_norm", -1);
12036+
12037+ cur = ggml_add(ctx0, cur, sa_out);
12038+ cur = lctx.cvec.apply_to(ctx0, cur, il);
12039+ cb(cur, "l_out", il);
12040+
12041+ // input for next layer
12042+ inpL = cur;
12043+ }
12044+
12045+ cur = inpL;
12046+
12047+ cur = llm_build_norm(ctx0, cur, hparams,
12048+ model.output_norm, NULL,
12049+ LLM_NORM_RMS, cb, -1);
12050+
12051+ cb(cur, "result_norm", -1);
12052+
12053+ // lm_head
12054+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
12055+
12056+ cb(cur, "result_output", -1);
12057+
12058+ ggml_build_forward_expand(gf, cur);
12059+
12060+ return gf;
12061+ }
1184212062
1184312063 struct ggml_cgraph * build_starcoder2() {
1184412064 struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
@@ -14136,6 +14356,10 @@ static struct ggml_cgraph * llama_build_graph(
1413614356 {
1413714357 result = llm.build_gemma2();
1413814358 } break;
14359+ case LLM_ARCH_GEMMA3:
14360+ {
14361+ result = llm.build_gemma3();
14362+ } break;
1413914363 case LLM_ARCH_STARCODER2:
1414014364 {
1414114365 result = llm.build_starcoder2();
@@ -17315,6 +17539,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
1731517539 case LLM_ARCH_PHI3:
1731617540 case LLM_ARCH_GEMMA:
1731717541 case LLM_ARCH_GEMMA2:
17542+ case LLM_ARCH_GEMMA3:
1731817543 case LLM_ARCH_STARCODER2:
1731917544 case LLM_ARCH_OPENELM:
1732017545 case LLM_ARCH_GPTNEOX:
0 commit comments