|
| 1 | + |
| 2 | +from __future__ import division |
| 3 | +import random |
| 4 | +import time |
| 5 | + |
| 6 | +from struct_utils import order_disordered |
| 7 | +from knn_sample import knn_sample |
| 8 | +from similar_els import materialize, score |
| 9 | +from common import connect_database, KNN_TABLE, ML_MODELS |
| 10 | +from cif_utils import ase_to_eq_cif |
| 11 | +from prediction import prop_models, load_ml_models |
| 12 | +from prediction_ranges import prediction_ranges, TOL_QUALITY |
| 13 | + |
| 14 | + |
| 15 | +result, error = None, "No results (outside of prediction capabilities)" |
| 16 | +sample = {} |
| 17 | + |
| 18 | +for prop_id in prediction_ranges: |
| 19 | + dice = random.choice([0, 1]) |
| 20 | + bound = (prediction_ranges[prop_id][0] + prediction_ranges[prop_id][1]) / 3 |
| 21 | + if dice: |
| 22 | + sample[prop_id + '_min'] = float(bound * 2) |
| 23 | + sample[prop_id + '_max'] = float(prediction_ranges[prop_id][1]) |
| 24 | + else: |
| 25 | + sample[prop_id + '_min'] = float(prediction_ranges[prop_id][0]) |
| 26 | + sample[prop_id + '_max'] = float(bound) |
| 27 | + |
| 28 | +active_ml_models = load_ml_models(ML_MODELS, debug=False) |
| 29 | + |
| 30 | +starttime = time.time() |
| 31 | + |
| 32 | +cursor, connection = connect_database() |
| 33 | + |
| 34 | +els_samples = knn_sample(cursor, sample) |
| 35 | +for els_sample in els_samples: |
| 36 | + |
| 37 | + scoring, error = materialize(els_sample, active_ml_models) |
| 38 | + if error or not scoring: |
| 39 | + continue |
| 40 | + |
| 41 | + result = score(scoring, sample) |
| 42 | + break |
| 43 | + |
| 44 | +connection.close() |
| 45 | + |
| 46 | +if not result: raise RuntimeError(error) |
| 47 | + |
| 48 | +answer_props = {prop_id: result['prediction'][prop_id]['value'] for prop_id in result['prediction']} |
| 49 | + |
| 50 | +# normalization 10**5 |
| 51 | +answer_props['t'] /= 100000 |
| 52 | +sample['t_min'] /= 100000 |
| 53 | +sample['t_max'] /= 100000 |
| 54 | + |
| 55 | +if 'disordered' in result['structure'].info: |
| 56 | + result['structure'], error = order_disordered(result['structure']) |
| 57 | + if error: raise RuntimeError(error) |
| 58 | + |
| 59 | + result['structure'].center(about=0.0) |
| 60 | + |
| 61 | +result_quality, aux_info = 0, [] |
| 62 | +for k, v in answer_props.items(): |
| 63 | + aux_info.append([ |
| 64 | + prop_models[k]['name'].replace(' ', '_'), |
| 65 | + sample[k + '_min'], |
| 66 | + v, |
| 67 | + sample[k + '_max'], |
| 68 | + prop_models[k]['units'] |
| 69 | + ]) |
| 70 | + tol = (sample[k + '_max'] - sample[k + '_min']) * TOL_QUALITY |
| 71 | + if sample[k + '_min'] - tol < v < sample[k + '_max'] + tol: |
| 72 | + result_quality += 1 |
| 73 | + |
| 74 | +print(ase_to_eq_cif(result['structure'], supply_sg=False, mpds_labs_loop=[result_quality] + aux_info)) |
| 75 | +print("Done in %1.2f sc" % (time.time() - starttime)) |
0 commit comments