\n",
@@ -5969,9 +6300,17 @@
"[20 rows x 7 columns]"
]
},
+ "execution_count": 119,
"metadata": {},
- "execution_count": 119
+ "output_type": "execute_result"
}
+ ],
+ "source": [
+ "# Create prediction-enriched test dataframe\n",
+ "test_df[\"prediction\"] = test_pred_classes # create column with test prediction class names\n",
+ "test_df[\"pred_prob\"] = tf.reduce_max(test_pred_probs, axis=1).numpy() # get the maximum prediction probability\n",
+ "test_df[\"correct\"] = test_df[\"prediction\"] == test_df[\"target\"] # create binary column for whether the prediction is right or not\n",
+ "test_df.head(20)"
]
},
{
@@ -5987,23 +6326,20 @@
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "tDUOsuKJ6IQH",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 417
},
- "outputId": "8117b505-1d7b-49dc-9291-a76f92e00e6e"
+ "id": "tDUOsuKJ6IQH",
+ "outputId": "8117b505-1d7b-49dc-9291-a76f92e00e6e",
+ "vscode": {
+ "languageId": "python"
+ }
},
- "source": [
- "# Find top 100 most wrong samples (note: 100 is an abitrary number, you could go through all of them if you wanted)\n",
- "top_100_wrong = test_df[test_df[\"correct\"] == False].sort_values(\"pred_prob\", ascending=False)[:100]\n",
- "top_100_wrong"
- ],
- "execution_count": null,
"outputs": [
{
- "output_type": "execute_result",
"data": {
"text/html": [
"
\n",
@@ -6166,9 +6502,15 @@
"[100 rows x 7 columns]"
]
},
+ "execution_count": 120,
"metadata": {},
- "execution_count": 120
+ "output_type": "execute_result"
}
+ ],
+ "source": [
+ "# Find top 100 most wrong samples (note: 100 is an abitrary number, you could go through all of them if you wanted)\n",
+ "top_100_wrong = test_df[test_df[\"correct\"] == False].sort_values(\"pred_prob\", ascending=False)[:100]\n",
+ "top_100_wrong"
]
},
{
@@ -6182,24 +6524,20 @@
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "ysddyYy717HJ",
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "2a3ad761-8f27-4c5b-b20d-d8169328e3dc"
+ "id": "ysddyYy717HJ",
+ "outputId": "2a3ad761-8f27-4c5b-b20d-d8169328e3dc",
+ "vscode": {
+ "languageId": "python"
+ }
},
- "source": [
- "# Investigate top wrong preds\n",
- "for row in top_100_wrong[0:10].itertuples(): # adjust indexes to view different samples\n",
- " _, target, text, line_number, total_lines, prediction, pred_prob, _ = row\n",
- " print(f\"Target: {target}, Pred: {prediction}, Prob: {pred_prob}, Line number: {line_number}, Total lines: {total_lines}\\n\")\n",
- " print(f\"Text:\\n{text}\\n\")\n",
- " print(\"-----\\n\")"
- ],
- "execution_count": null,
"outputs": [
{
+ "name": "stdout",
"output_type": "stream",
"text": [
"Target: BACKGROUND, Pred: OBJECTIVE, Prob: 0.9448384046554565, Line number: 0, Total lines: 12\n",
@@ -6272,9 +6610,16 @@
"\n",
"-----\n",
"\n"
- ],
- "name": "stdout"
+ ]
}
+ ],
+ "source": [
+ "# Investigate top wrong preds\n",
+ "for row in top_100_wrong[0:10].itertuples(): # adjust indexes to view different samples\n",
+ " _, target, text, line_number, total_lines, prediction, pred_prob, _ = row\n",
+ " print(f\"Target: {target}, Pred: {prediction}, Prob: {pred_prob}, Line number: {line_number}, Total lines: {total_lines}\\n\")\n",
+ " print(f\"Text:\\n{text}\\n\")\n",
+ " print(\"-----\\n\")"
]
},
{
@@ -6336,26 +6681,21 @@
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "-qKFXysU9Y1j",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 414
},
- "outputId": "7d70562c-90ac-4e71-a020-14ab673bd077"
+ "id": "-qKFXysU9Y1j",
+ "outputId": "7d70562c-90ac-4e71-a020-14ab673bd077",
+ "vscode": {
+ "languageId": "python"
+ }
},
- "source": [
- "# Download and open example abstracts (copy and pasted from PubMed)\n",
- "!wget https://raw.githubusercontent.com/mrdbourke/tensorflow-deep-learning/main/extras/skimlit_example_abstracts.json\n",
- "\n",
- "with open(\"skimlit_example_abstracts.json\", \"r\") as f:\n",
- " example_abstracts = json.load(f)\n",
- "\n",
- "example_abstracts"
- ],
- "execution_count": null,
"outputs": [
{
+ "name": "stdout",
"output_type": "stream",
"text": [
"--2021-08-25 00:08:37-- https://raw.githubusercontent.com/mrdbourke/tensorflow-deep-learning/main/extras/skimlit_example_abstracts.json\n",
@@ -6369,13 +6709,12 @@
"\n",
"2021-08-25 00:08:37 (82.5 MB/s) - ‘skimlit_example_abstracts.json’ saved [6737/6737]\n",
"\n"
- ],
- "name": "stdout"
+ ]
},
{
- "output_type": "error",
"ename": "NameError",
"evalue": "ignored",
+ "output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
@@ -6383,20 +6722,32 @@
"\u001b[0;31mNameError\u001b[0m: name 'json' is not defined"
]
}
+ ],
+ "source": [
+ "# Download and open example abstracts (copy and pasted from PubMed)\n",
+ "!wget https://raw.githubusercontent.com/mrdbourke/tensorflow-deep-learning/main/extras/skimlit_example_abstracts.json\n",
+ "\n",
+ "with open(\"skimlit_example_abstracts.json\", \"r\") as f:\n",
+ " example_abstracts = json.load(f)\n",
+ "\n",
+ "example_abstracts"
]
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "-1cIAS1Z6r_l"
+ "id": "-1cIAS1Z6r_l",
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# See what our example abstracts look like\n",
"abstracts = pd.DataFrame(example_abstracts)\n",
"abstracts"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -6411,21 +6762,43 @@
},
{
"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "_gwVNdLQHpQX",
+ "vscode": {
+ "languageId": "python"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# # Create sentencizer - Source: https://spacy.io/usage/linguistic-features#sbd \n",
+ "# from spacy.lang.en import English\n",
+ "# nlp = English() # setup English sentence parser\n",
+ "# sentencizer = nlp.create_pipe(\"sentencizer\") # create sentence splitting pipeline object\n",
+ "# nlp.add_pipe(sentencizer) # add sentence splitting pipeline object to sentence parser\n",
+ "# doc = nlp(example_abstracts[0][\"abstract\"]) # create \"doc\" of parsed sequences, change index for a different abstract\n",
+ "# abstract_lines = [str(sent) for sent in list(doc.sents)] # return detected sentences from doc in string type (not spaCy token type)\n",
+ "# abstract_lines"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "_gwVNdLQHpQX"
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# Create sentencizer - Source: https://spacy.io/usage/linguistic-features#sbd \n",
"from spacy.lang.en import English\n",
- "nlp = English() # setup English sentence parser\n",
- "sentencizer = nlp.create_pipe(\"sentencizer\") # create sentence splitting pipeline object\n",
- "nlp.add_pipe(sentencizer) # add sentence splitting pipeline object to sentence parser\n",
- "doc = nlp(example_abstracts[0][\"abstract\"]) # create \"doc\" of parsed sequences, change index for a different abstract\n",
- "abstract_lines = [str(sent) for sent in list(doc.sents)] # return detected sentences from doc in string type (not spaCy token type)\n",
+ "nlp= English()\n",
+ "nlp.add_pipe(\"sentencizer\")\n",
+ "doc= nlp(example_abstracts[0][\"abstract\"])\n",
+ "abstract_lines= [str(sent) for sent in list(doc.sents)]\n",
"abstract_lines"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -6442,9 +6815,14 @@
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "A_Hi0alJI4Xu"
+ "id": "A_Hi0alJI4Xu",
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# Get total number of lines\n",
"total_lines_in_sample = len(abstract_lines)\n",
@@ -6458,9 +6836,7 @@
" sample_dict[\"total_lines\"] = total_lines_in_sample - 1\n",
" sample_lines.append(sample_dict)\n",
"sample_lines"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -6473,33 +6849,39 @@
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "rm0MYaAnBkbp"
+ "id": "rm0MYaAnBkbp",
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# Get all line_number values from sample abstract\n",
"test_abstract_line_numbers = [line[\"line_number\"] for line in sample_lines]\n",
"# One-hot encode to same depth as training data, so model accepts right input shape\n",
"test_abstract_line_numbers_one_hot = tf.one_hot(test_abstract_line_numbers, depth=15) \n",
"test_abstract_line_numbers_one_hot"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "8Wzbv3w6B3OU"
+ "id": "8Wzbv3w6B3OU",
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# Get all total_lines values from sample abstract\n",
"test_abstract_total_lines = [line[\"total_lines\"] for line in sample_lines]\n",
"# One-hot encode to same depth as training data, so model accepts right input shape\n",
"test_abstract_total_lines_one_hot = tf.one_hot(test_abstract_total_lines, depth=20)\n",
"test_abstract_total_lines_one_hot"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -6512,16 +6894,19 @@
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "HOOPoG3cCA0F"
+ "id": "HOOPoG3cCA0F",
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# Split abstract lines into characters\n",
"abstract_chars = [split_chars(sentence) for sentence in abstract_lines]\n",
"abstract_chars"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -6534,9 +6919,14 @@
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "0b7siZa1CQG7"
+ "id": "0b7siZa1CQG7",
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# Make predictions on sample abstract features\n",
"%%time\n",
@@ -6545,22 +6935,23 @@
" tf.constant(abstract_lines),\n",
" tf.constant(abstract_chars)))\n",
"test_abstract_pred_probs"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "8nxqfCBfCqWe"
+ "id": "8nxqfCBfCqWe",
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# Turn prediction probabilities into prediction classes\n",
"test_abstract_preds = tf.argmax(test_abstract_pred_probs, axis=1)\n",
"test_abstract_preds"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -6573,29 +6964,35 @@
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "LduhApa3C1mD"
+ "id": "LduhApa3C1mD",
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# Turn prediction class integers into string class names\n",
"test_abstract_pred_classes = [label_encoder.classes_[i] for i in test_abstract_preds]\n",
"test_abstract_pred_classes"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "code",
+ "execution_count": null,
"metadata": {
- "id": "BhhDPZSHDCJD"
+ "id": "BhhDPZSHDCJD",
+ "vscode": {
+ "languageId": "python"
+ }
},
+ "outputs": [],
"source": [
"# Visualize abstract lines and predicted sequence labels\n",
"for i, line in enumerate(abstract_lines):\n",
" print(f\"{test_abstract_pred_classes[i]}: {line}\")"
- ],
- "execution_count": null,
- "outputs": []
+ ]
},
{
"cell_type": "markdown",
@@ -6656,5 +7053,23 @@
"* Since our dataset has imbalanced classes (as with many real-world datasets), so it might be worth looking into the [TensorFlow guide for different methods to training a model with imbalanced classes](https://www.tensorflow.org/tutorials/structured_data/imbalanced_data).\n"
]
}
- ]
-}
\ No newline at end of file
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "authorship_tag": "ABX9TyM5wpCFGOHhp2o71grvS7VP",
+ "collapsed_sections": [],
+ "include_colab_link": true,
+ "mount_file_id": "1_yq3R-ThKP78_byQV9OovntEcXpQcBK2",
+ "name": "09_SkimLit_nlp_milestone_project_2.ipynb",
+ "provenance": [],
+ "toc_visible": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
From 08b5c8b239f41d052400da14ada53809a5acbc52 Mon Sep 17 00:00:00 2001
From: Argha Nath <54589605+arghanath007@users.noreply.github.com>
Date: Mon, 13 Feb 2023 09:33:08 +0530
Subject: [PATCH 2/2] Skimlit NLP project
---
09_SkimLit_nlp_milestone_project_2.ipynb | 676 +++++------------------
1 file changed, 143 insertions(+), 533 deletions(-)
diff --git a/09_SkimLit_nlp_milestone_project_2.ipynb b/09_SkimLit_nlp_milestone_project_2.ipynb
index 197ceae7..a29be75d 100644
--- a/09_SkimLit_nlp_milestone_project_2.ipynb
+++ b/09_SkimLit_nlp_milestone_project_2.ipynb
@@ -129,10 +129,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "dsuQCg5Uaw1w",
- "outputId": "f1681b9e-a9e6-4049-9591-7300b376cf46",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "f1681b9e-a9e6-4049-9591-7300b376cf46"
},
"outputs": [
{
@@ -171,10 +168,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "c0qt0M55a98x",
- "outputId": "4f4db3ae-e84b-432d-a807-7900ef3e1461",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "4f4db3ae-e84b-432d-a807-7900ef3e1461"
},
"outputs": [
{
@@ -232,10 +226,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "crmxKEJ69bNW",
- "outputId": "87514fc4-594d-4572-d5ca-0125b51e073e",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "87514fc4-594d-4572-d5ca-0125b51e073e"
},
"outputs": [
{
@@ -269,10 +260,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "C1Zp21fGbBUJ",
- "vscode": {
- "languageId": "python"
- }
+ "id": "C1Zp21fGbBUJ"
},
"outputs": [],
"source": [
@@ -288,10 +276,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "CWqMrjLCbFTr",
- "outputId": "872976d8-e0c4-4cae-fd6a-db538926fa46",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "872976d8-e0c4-4cae-fd6a-db538926fa46"
},
"outputs": [
{
@@ -351,10 +336,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "2yjdhJxbbIhX",
- "vscode": {
- "languageId": "python"
- }
+ "id": "2yjdhJxbbIhX"
},
"outputs": [],
"source": [
@@ -396,10 +378,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "IT7RMQsEbI0I",
- "outputId": "5c6b3b6d-393c-42d2-bf0d-009f288d61cf",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "5c6b3b6d-393c-42d2-bf0d-009f288d61cf"
},
"outputs": [
{
@@ -483,10 +462,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "B65Ffn9abJKH",
- "vscode": {
- "languageId": "python"
- }
+ "id": "B65Ffn9abJKH"
},
"outputs": [],
"source": [
@@ -557,10 +533,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "yDd28-PfgoUP",
- "outputId": "9a1f574a-f050-41a7-83e4-6deb7f37c225",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "9a1f574a-f050-41a7-83e4-6deb7f37c225"
},
"outputs": [
{
@@ -598,10 +571,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "FcYkHrnnh0lf",
- "outputId": "b86a45de-d1f7-4172-8c63-e892c679e827",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "b86a45de-d1f7-4172-8c63-e892c679e827"
},
"outputs": [
{
@@ -695,10 +665,7 @@
"height": 480
},
"id": "RRSTUXuth9jJ",
- "outputId": "f23dff4e-7eb8-43fb-b374-b32984eeae1a",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "f23dff4e-7eb8-43fb-b374-b32984eeae1a"
},
"outputs": [
{
@@ -881,10 +848,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "rnQIDiJPg231",
- "outputId": "c89c50e3-596e-4b87-a291-3d918959ab6e",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "c89c50e3-596e-4b87-a291-3d918959ab6e"
},
"outputs": [
{
@@ -928,10 +892,7 @@
"height": 267
},
"id": "tkCRIBWbhUmD",
- "outputId": "df00a85f-94a7-453b-e1c7-678599b1449f",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "df00a85f-94a7-453b-e1c7-678599b1449f"
},
"outputs": [
{
@@ -983,10 +944,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "ybvBrdPKwmDR",
- "outputId": "cdc484a0-774a-49ae-9560-144205ecc3ec",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "cdc484a0-774a-49ae-9560-144205ecc3ec"
},
"outputs": [
{
@@ -1016,10 +974,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "M-OPWZPei46_",
- "outputId": "8f8c167c-bb1b-4c96-8145-897a78fc6d89",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "8f8c167c-bb1b-4c96-8145-897a78fc6d89"
},
"outputs": [
{
@@ -1079,10 +1034,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "riWJb105awwn",
- "outputId": "33b1d264-4ef1-441b-f6f3-4a6013a751dd",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "33b1d264-4ef1-441b-f6f3-4a6013a751dd"
},
"outputs": [
{
@@ -1131,10 +1083,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "IG8LmKhAozc_",
- "outputId": "f8e95d24-6e01-4ded-9048-1b6fe5012428",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "f8e95d24-6e01-4ded-9048-1b6fe5012428"
},
"outputs": [
{
@@ -1177,10 +1126,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "KeQ1OQ9glVaz",
- "outputId": "1560a171-6d14-4630-a9f1-89263b0f0e73",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "1560a171-6d14-4630-a9f1-89263b0f0e73"
},
"outputs": [
{
@@ -1235,10 +1181,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "Km5hWlVymnxv",
- "vscode": {
- "languageId": "python"
- }
+ "id": "Km5hWlVymnxv"
},
"outputs": [],
"source": [
@@ -1276,10 +1219,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "kq7BAPCmn1bM",
- "outputId": "ea36bce3-e906-46f3-ca96-6cee22ae358a",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "ea36bce3-e906-46f3-ca96-6cee22ae358a"
},
"outputs": [
{
@@ -1318,10 +1258,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "vuGl9z2NjAl8",
- "outputId": "cafb9c0a-5202-4b6c-bb17-5d86b4fc7c4a",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "cafb9c0a-5202-4b6c-bb17-5d86b4fc7c4a"
},
"outputs": [
{
@@ -1375,10 +1312,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "a6y-nK2tGwOL",
- "outputId": "c3dbccf5-0234-4f7f-8c64-20f509c70b1d",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "c3dbccf5-0234-4f7f-8c64-20f509c70b1d"
},
"outputs": [
{
@@ -1417,10 +1351,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "P44NMOt1GzZL",
- "vscode": {
- "languageId": "python"
- }
+ "id": "P44NMOt1GzZL"
},
"outputs": [],
"source": [
@@ -1436,10 +1367,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "9WN_TLx2jv7T",
- "outputId": "fff443d3-c04f-47ba-a472-5752f47fac67",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "fff443d3-c04f-47ba-a472-5752f47fac67"
},
"outputs": [
{
@@ -1484,10 +1412,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "vCR0F7Rhptcp",
- "vscode": {
- "languageId": "python"
- }
+ "id": "vCR0F7Rhptcp"
},
"outputs": [],
"source": [
@@ -1519,10 +1444,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "1Y-V_9-KrH7y",
- "outputId": "bbc21452-0f02-48d2-b3f2-944d342e938d",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "bbc21452-0f02-48d2-b3f2-944d342e938d"
},
"outputs": [
{
@@ -1561,10 +1483,7 @@
"height": 265
},
"id": "Y9S27ACkroai",
- "outputId": "dd67efe0-18eb-413f-fccf-ebf83d7701d5",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "dd67efe0-18eb-413f-fccf-ebf83d7701d5"
},
"outputs": [
{
@@ -1605,10 +1524,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "4e5nUagxr4r5",
- "outputId": "a989552c-41f7-4dcb-a130-0f684750ad0d",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "a989552c-41f7-4dcb-a130-0f684750ad0d"
},
"outputs": [
{
@@ -1651,10 +1567,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "oEZbyvh1WCBw",
- "outputId": "cf0a563b-3595-4e59-c35e-36a584841872",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "cf0a563b-3595-4e59-c35e-36a584841872"
},
"outputs": [
{
@@ -1705,10 +1618,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "xniPYW60uzby",
- "vscode": {
- "languageId": "python"
- }
+ "id": "xniPYW60uzby"
},
"outputs": [],
"source": [
@@ -1729,10 +1639,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "gtfQ27MNpy-v",
- "vscode": {
- "languageId": "python"
- }
+ "id": "gtfQ27MNpy-v"
},
"outputs": [],
"source": [
@@ -1756,10 +1663,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "AbJtmyd1sWW8",
- "vscode": {
- "languageId": "python"
- }
+ "id": "AbJtmyd1sWW8"
},
"outputs": [],
"source": [
@@ -1775,10 +1679,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "gVZDwaymsbLa",
- "outputId": "d7847633-85bf-41ef-90cb-b328428f66b3",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "d7847633-85bf-41ef-90cb-b328428f66b3"
},
"outputs": [
{
@@ -1828,10 +1729,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "IS80FGEhsgVe",
- "outputId": "5410d298-46f8-4e03-c652-ca2629169d3b",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "5410d298-46f8-4e03-c652-ca2629169d3b"
},
"outputs": [
{
@@ -1869,10 +1767,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "Ly5BSLkGZnPO",
- "outputId": "70389114-b78f-48db-8983-4f7d501fd92e",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "70389114-b78f-48db-8983-4f7d501fd92e"
},
"outputs": [
{
@@ -1934,10 +1829,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "AIKPM2QOuLQv",
- "outputId": "33119c36-8c56-46bf-b789-c1d0f90e84ea",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "33119c36-8c56-46bf-b789-c1d0f90e84ea"
},
"outputs": [
{
@@ -2020,10 +1912,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "tan6Ekiwfza5",
- "outputId": "3f55adbf-9c1e-4670-8692-129732b23b06",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "3f55adbf-9c1e-4670-8692-129732b23b06"
},
"outputs": [
{
@@ -2054,10 +1943,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "dnEJakTxgJWx",
- "outputId": "b585f44d-e736-471c-fa7d-bf572a05f498",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "b585f44d-e736-471c-fa7d-bf572a05f498"
},
"outputs": [
{
@@ -2110,10 +1996,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "oTW5buTKvRR6",
- "vscode": {
- "languageId": "python"
- }
+ "id": "oTW5buTKvRR6"
},
"outputs": [],
"source": [
@@ -2140,10 +2023,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "aOaXSsZjnKmy",
- "outputId": "7c62d30e-67b1-4da2-8de0-9acb4a3ef8c4",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "7c62d30e-67b1-4da2-8de0-9acb4a3ef8c4"
},
"outputs": [
{
@@ -2205,10 +2085,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "IKpHoDysgvdC",
- "outputId": "153063a7-83e7-449b-f24e-772b6ea526bd",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "153063a7-83e7-449b-f24e-772b6ea526bd"
},
"outputs": [
{
@@ -2252,10 +2129,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "WYvFOIBvhjpX",
- "outputId": "c026604f-d8cd-4e45-81ee-9aba8112368a",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "c026604f-d8cd-4e45-81ee-9aba8112368a"
},
"outputs": [
{
@@ -2289,10 +2163,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "jAAtBWO2iRft",
- "outputId": "7b9f7b17-67c2-4b92-ec3e-a5686bfc1c6e",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "7b9f7b17-67c2-4b92-ec3e-a5686bfc1c6e"
},
"outputs": [
{
@@ -2332,10 +2203,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "9ydUpF6cqMll",
- "outputId": "56f60716-4861-44bb-ee89-350f676243e3",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "56f60716-4861-44bb-ee89-350f676243e3"
},
"outputs": [
{
@@ -2363,10 +2231,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "KMfRLv0omdY4",
- "outputId": "044c15b8-3581-4603-b40d-c52c10ceec05",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "044c15b8-3581-4603-b40d-c52c10ceec05"
},
"outputs": [
{
@@ -2431,10 +2296,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "hk8mJUNy0xOO",
- "vscode": {
- "languageId": "python"
- }
+ "id": "hk8mJUNy0xOO"
},
"outputs": [],
"source": [
@@ -2462,10 +2324,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "f5gCkZgYJYSi",
- "outputId": "a78489bb-e747-4dab-f3ef-800c3df1a503",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "a78489bb-e747-4dab-f3ef-800c3df1a503"
},
"outputs": [
{
@@ -2520,10 +2379,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "So4lSnW_2F1i",
- "vscode": {
- "languageId": "python"
- }
+ "id": "So4lSnW_2F1i"
},
"outputs": [],
"source": [
@@ -2550,10 +2406,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "39r3jhefoKWG",
- "outputId": "203a3d15-20e6-443b-868c-52f192f9e1c1",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "203a3d15-20e6-443b-868c-52f192f9e1c1"
},
"outputs": [
{
@@ -2603,10 +2456,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "ttJKg6cDihGd",
- "outputId": "fa4dac4a-a201-4b87-901c-d179927cdec4",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "fa4dac4a-a201-4b87-901c-d179927cdec4"
},
"outputs": [
{
@@ -2649,10 +2499,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "tz8TMzLrjJYm",
- "outputId": "1983347a-fe5a-4a45-d5a9-7dbbb0b293f9",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "1983347a-fe5a-4a45-d5a9-7dbbb0b293f9"
},
"outputs": [
{
@@ -2697,10 +2544,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "2oe5UxcgqvA2",
- "outputId": "da030c86-f6b6-4f7a-fe8c-6d675871dade",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "da030c86-f6b6-4f7a-fe8c-6d675871dade"
},
"outputs": [
{
@@ -2740,10 +2584,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "u8RIEnvVq7Ri",
- "outputId": "761018f5-8901-49b2-cac7-0a163af4c0a4",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "761018f5-8901-49b2-cac7-0a163af4c0a4"
},
"outputs": [
{
@@ -2771,10 +2612,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "hD5yvw9brOCp",
- "outputId": "da15f978-d7a7-4388-bcce-27443462d81a",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "da15f978-d7a7-4388-bcce-27443462d81a"
},
"outputs": [
{
@@ -2840,10 +2678,7 @@
"height": 69
},
"id": "nkoTYNvu36Bq",
- "outputId": "20031e5f-05ee-40a8-b2de-977591afe836",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "20031e5f-05ee-40a8-b2de-977591afe836"
},
"outputs": [
{
@@ -2886,10 +2721,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "qLmU_GS64S2J",
- "outputId": "a0f7b0d9-e837-4748-d35e-191066b9486d",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "a0f7b0d9-e837-4748-d35e-191066b9486d"
},
"outputs": [
{
@@ -2925,10 +2757,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "4CjyFW5g47Ps",
- "outputId": "cc4abcee-bffe-4c98-9095-b04a9a0b2337",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "cc4abcee-bffe-4c98-9095-b04a9a0b2337"
},
"outputs": [
{
@@ -2958,10 +2787,7 @@
"height": 265
},
"id": "uPTgrtVJ2DSK",
- "outputId": "43355b07-51b9-41e9-c007-620b7dff7559",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "43355b07-51b9-41e9-c007-620b7dff7559"
},
"outputs": [
{
@@ -3002,10 +2828,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "P_k46x0Wy2n9",
- "outputId": "fe425b19-12c7-4ab4-eada-dc0f0c1f4ece",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "fe425b19-12c7-4ab4-eada-dc0f0c1f4ece"
},
"outputs": [
{
@@ -3047,10 +2870,7 @@
"height": 35
},
"id": "a7uKkbP_irFg",
- "outputId": "3858b78a-bc26-4d33-b55a-5fb3c3c6486e",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "3858b78a-bc26-4d33-b55a-5fb3c3c6486e"
},
"outputs": [
{
@@ -3078,10 +2898,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "PTMInkbv4Jxi",
- "vscode": {
- "languageId": "python"
- }
+ "id": "PTMInkbv4Jxi"
},
"outputs": [],
"source": [
@@ -3113,10 +2930,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "uxdh7gxv5R4i",
- "outputId": "d29d023f-3967-4514-ef61-f37ac4673b62",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "d29d023f-3967-4514-ef61-f37ac4673b62"
},
"outputs": [
{
@@ -3154,10 +2968,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "AAcasGEh5d2O",
- "outputId": "860edae7-52e0-4d6c-f6db-f615ddda9fe7",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "860edae7-52e0-4d6c-f6db-f615ddda9fe7"
},
"outputs": [
{
@@ -3236,10 +3047,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "YQHt1hSy57cu",
- "outputId": "d1dcb96e-5f66-4e4e-ae33-8b3eee665962",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "d1dcb96e-5f66-4e4e-ae33-8b3eee665962"
},
"outputs": [
{
@@ -3312,10 +3120,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "vVwC0xadtb5r",
- "vscode": {
- "languageId": "python"
- }
+ "id": "vVwC0xadtb5r"
},
"outputs": [],
"source": [
@@ -3344,10 +3149,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "jwdxy2gQu7Wm",
- "outputId": "a632e6a9-f72f-4355-d9f9-0f2b887dc272",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "a632e6a9-f72f-4355-d9f9-0f2b887dc272"
},
"outputs": [
{
@@ -3399,10 +3201,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "ixTsGYBbnXn9",
- "outputId": "f643ca7b-96b2-479d-a31b-f2a17cb3f658",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "f643ca7b-96b2-479d-a31b-f2a17cb3f658"
},
"outputs": [
{
@@ -3441,10 +3240,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "UGokmMdGn91w",
- "outputId": "64ca51e6-bd05-4d73-f267-9f031025595b",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "64ca51e6-bd05-4d73-f267-9f031025595b"
},
"outputs": [
{
@@ -3477,10 +3273,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "9OHO-fl9oA5V",
- "outputId": "252ccc5f-a41a-411a-b92e-f815a0448dc9",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "252ccc5f-a41a-411a-b92e-f815a0448dc9"
},
"outputs": [
{
@@ -3523,10 +3316,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "o0u4QzT2xMgF",
- "outputId": "4d417acb-0ff7-49bf-c408-b2f76b980722",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "4d417acb-0ff7-49bf-c408-b2f76b980722"
},
"outputs": [
{
@@ -3561,10 +3351,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "qdPUXiZux68-",
- "outputId": "a0fdbe69-980a-4bb3-a579-f499bc22b3b4",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "a0fdbe69-980a-4bb3-a579-f499bc22b3b4"
},
"outputs": [
{
@@ -3592,10 +3379,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "4NCDZD7cyoj7",
- "outputId": "972eccb5-fe98-4b96-e4b2-6df64da2d86f",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "972eccb5-fe98-4b96-e4b2-6df64da2d86f"
},
"outputs": [
{
@@ -3649,10 +3433,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "5DI2KQf7z-yo",
- "vscode": {
- "languageId": "python"
- }
+ "id": "5DI2KQf7z-yo"
},
"outputs": [],
"source": [
@@ -3704,10 +3485,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "21PRnEmK2a0Y",
- "outputId": "9f3e26bf-0443-4781-8c09-1b5571b51538",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "9f3e26bf-0443-4781-8c09-1b5571b51538"
},
"outputs": [
{
@@ -3764,10 +3542,7 @@
"height": 856
},
"id": "EF5-v5cRSmuk",
- "outputId": "9c781d3c-e8de-43ed-e3c1-aed99fac45d0",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "9c781d3c-e8de-43ed-e3c1-aed99fac45d0"
},
"outputs": [
{
@@ -3804,10 +3579,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "4Yx8PFSc2hqE",
- "vscode": {
- "languageId": "python"
- }
+ "id": "4Yx8PFSc2hqE"
},
"outputs": [],
"source": [
@@ -3837,10 +3609,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "pYU0fX6rpbgI",
- "vscode": {
- "languageId": "python"
- }
+ "id": "pYU0fX6rpbgI"
},
"outputs": [],
"source": [
@@ -3867,10 +3636,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "UlOs99Emp52r",
- "outputId": "79caaf4f-5f8b-4ec1-8d19-e98cae3542f9",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "79caaf4f-5f8b-4ec1-8d19-e98cae3542f9"
},
"outputs": [
{
@@ -3907,10 +3673,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "yp0c25coprwp",
- "outputId": "ff296f4a-6480-40e9-c989-b0118d34402a",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "ff296f4a-6480-40e9-c989-b0118d34402a"
},
"outputs": [
{
@@ -3943,10 +3706,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "BfAMuoJett_t",
- "outputId": "6e9658da-2aa3-41f3-a41a-488d51df2885",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "6e9658da-2aa3-41f3-a41a-488d51df2885"
},
"outputs": [
{
@@ -3993,10 +3753,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "1z_zbrXTYN7G",
- "outputId": "2646ffbf-cc24-490a-b88f-4a139972a8b3",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "2646ffbf-cc24-490a-b88f-4a139972a8b3"
},
"outputs": [
{
@@ -4036,10 +3793,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "Ic5MCrFxYgsB",
- "outputId": "deef25ca-06bc-4352-c249-3694af01d247",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "deef25ca-06bc-4352-c249-3694af01d247"
},
"outputs": [
{
@@ -4067,10 +3821,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "CBNPIRIC7EsE",
- "outputId": "a1427c17-a892-449a-f270-a273e336baf1",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "a1427c17-a892-449a-f270-a273e336baf1"
},
"outputs": [
{
@@ -4159,10 +3910,7 @@
"height": 203
},
"id": "Htf-tnFcEcAn",
- "outputId": "41e2420b-a87d-438b-f4aa-4a8f84329b48",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "41e2420b-a87d-438b-f4aa-4a8f84329b48"
},
"outputs": [
{
@@ -4302,10 +4050,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "LJVhuU7cMd0-",
- "outputId": "bfde78db-7693-4789-ceb6-baa043426f27",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "bfde78db-7693-4789-ceb6-baa043426f27"
},
"outputs": [
{
@@ -4364,10 +4109,7 @@
"height": 282
},
"id": "rKoNMSBNImLG",
- "outputId": "9f5a97b4-5fe1-49a9-cb31-a6e887a011c5",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "9f5a97b4-5fe1-49a9-cb31-a6e887a011c5"
},
"outputs": [
{
@@ -4413,10 +4155,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "LsjdKcXUMkgE",
- "vscode": {
- "languageId": "python"
- }
+ "id": "LsjdKcXUMkgE"
},
"outputs": [],
"source": [
@@ -4445,10 +4184,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "R7BERNOQK723",
- "outputId": "b74387c2-1f01-4c5a-8cff-92a528410fc7",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "b74387c2-1f01-4c5a-8cff-92a528410fc7"
},
"outputs": [
{
@@ -4505,10 +4241,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "S3bLbdWzOBmY",
- "outputId": "6d7da296-7f65-47dc-8649-b05fe12a56bd",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "6d7da296-7f65-47dc-8649-b05fe12a56bd"
},
"outputs": [
{
@@ -4563,10 +4296,7 @@
"height": 267
},
"id": "oxDN9ASLL9uY",
- "outputId": "c484eba7-4242-478c-df2d-76b887d94436",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "c484eba7-4242-478c-df2d-76b887d94436"
},
"outputs": [
{
@@ -4606,10 +4336,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "or736pZLNwWn",
- "outputId": "fdf309c3-190d-4861-e3e4-f80e30b3b73c",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "fdf309c3-190d-4861-e3e4-f80e30b3b73c"
},
"outputs": [
{
@@ -4645,10 +4372,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "Egqq3LnnN0Z6",
- "outputId": "5a245b1f-0141-4548-bf43-3d2c754c3a80",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "5a245b1f-0141-4548-bf43-3d2c754c3a80"
},
"outputs": [
{
@@ -4725,10 +4449,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "aPiFnY8E0oPS",
- "vscode": {
- "languageId": "python"
- }
+ "id": "aPiFnY8E0oPS"
},
"outputs": [],
"source": [
@@ -4798,10 +4519,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "n7eJOhlKfVQJ",
- "outputId": "672d44c0-7f90-470c-fe02-e161db7fb478",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "672d44c0-7f90-470c-fe02-e161db7fb478"
},
"outputs": [
{
@@ -4866,10 +4584,7 @@
"height": 856
},
"id": "uM0dohpZ_v5U",
- "outputId": "685bed33-43be-49d1-9770-5e2a9f8f5d51",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "685bed33-43be-49d1-9770-5e2a9f8f5d51"
},
"outputs": [
{
@@ -4919,10 +4634,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "Ud8arQOTUtRl",
- "outputId": "ba427037-8be1-4a34-e3bf-fe8746497384",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "ba427037-8be1-4a34-e3bf-fe8746497384"
},
"outputs": [
{
@@ -4976,10 +4688,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "nwYd_dWPS8EB",
- "vscode": {
- "languageId": "python"
- }
+ "id": "nwYd_dWPS8EB"
},
"outputs": [],
"source": [
@@ -5018,10 +4727,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "8FDNHSIRyEE2",
- "outputId": "64f4b15b-c34b-43cf-8591-2ffe8dd9d9f5",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "64f4b15b-c34b-43cf-8591-2ffe8dd9d9f5"
},
"outputs": [
{
@@ -5067,10 +4773,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "LiAjolB7yLxw",
- "outputId": "05a27fed-63b9-4451-d854-57608b674527",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "05a27fed-63b9-4451-d854-57608b674527"
},
"outputs": [
{
@@ -5112,10 +4815,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "V6AtA9ffcC8Y",
- "outputId": "0862fd0f-11d6-4e49-871d-5af372c1c7b7",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "0862fd0f-11d6-4e49-871d-5af372c1c7b7"
},
"outputs": [
{
@@ -5157,10 +4857,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "l7x2LKrFc6CN",
- "outputId": "dc3d192d-d2a0-4581-8e68-2239366deadd",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "dc3d192d-d2a0-4581-8e68-2239366deadd"
},
"outputs": [
{
@@ -5188,10 +4885,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "dogdVk02dO62",
- "outputId": "23379661-1890-4a75-972c-0d27de68b439",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "23379661-1890-4a75-972c-0d27de68b439"
},
"outputs": [
{
@@ -5242,10 +4936,7 @@
"height": 234
},
"id": "uJtoRSYGb2VP",
- "outputId": "0f8db6d0-bc57-4db6-cb81-02233b550c76",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "0f8db6d0-bc57-4db6-cb81-02233b550c76"
},
"outputs": [
{
@@ -5353,10 +5044,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "9G--0tQkb5tq",
- "vscode": {
- "languageId": "python"
- }
+ "id": "9G--0tQkb5tq"
},
"outputs": [],
"source": [
@@ -5373,10 +5061,7 @@
"height": 571
},
"id": "JHtN7qJ3cAA3",
- "outputId": "f59b1872-129e-4b6b-ef66-4678fd6f0cf3",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "f59b1872-129e-4b6b-ef66-4678fd6f0cf3"
},
"outputs": [
{
@@ -5418,10 +5103,7 @@
"height": 571
},
"id": "PtDMFKsCcD1j",
- "outputId": "be94dea6-0dfd-405c-a986-4d8478c46bc6",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "be94dea6-0dfd-405c-a986-4d8478c46bc6"
},
"outputs": [
{
@@ -5480,10 +5162,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "HRalPoXEi0Es",
- "outputId": "5733b2a9-8ce6-4144-b35b-c88183ad05b8",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "5733b2a9-8ce6-4144-b35b-c88183ad05b8"
},
"outputs": [
{
@@ -5526,10 +5205,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "Mgsma17oUtAE",
- "vscode": {
- "languageId": "python"
- }
+ "id": "Mgsma17oUtAE"
},
"outputs": [],
"source": [
@@ -5560,10 +5236,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "7dQESoCSuUnK",
- "outputId": "e3b33414-871c-4167-b7b6-c1b7d7f0aeb0",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "e3b33414-871c-4167-b7b6-c1b7d7f0aeb0"
},
"outputs": [
{
@@ -5603,10 +5276,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "mDRneseeZSRY",
- "vscode": {
- "languageId": "python"
- }
+ "id": "mDRneseeZSRY"
},
"outputs": [],
"source": [
@@ -5645,10 +5315,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "WmLdyobSv95I",
- "outputId": "05aed0cb-be52-40c9-f46d-915ee0cf6b41",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "05aed0cb-be52-40c9-f46d-915ee0cf6b41"
},
"outputs": [
{
@@ -5684,10 +5351,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "jS4XMK6yxEn0",
- "outputId": "bc87355f-fc85-42ab-b3cf-f7acc220edfa",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "bc87355f-fc85-42ab-b3cf-f7acc220edfa"
},
"outputs": [
{
@@ -5728,10 +5392,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "TNDhkLYzznXn",
- "outputId": "01f3e235-aa57-41b8-9e9c-ecde2fcb322f",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "01f3e235-aa57-41b8-9e9c-ecde2fcb322f"
},
"outputs": [
{
@@ -5767,10 +5428,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "FZEk80xiqNLT",
- "outputId": "4e2376da-a9b4-4630-fe81-cde115d3e702",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "4e2376da-a9b4-4630-fe81-cde115d3e702"
},
"outputs": [
{
@@ -5846,10 +5504,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "mkFb3giT2FYW",
- "outputId": "4dd95f9b-5761-45e3-c639-f24e7dc95b20",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "4dd95f9b-5761-45e3-c639-f24e7dc95b20"
},
"outputs": [
{
@@ -5885,10 +5540,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "BpoQj-PexFf9",
- "outputId": "7f96e565-b6ae-4221-f36b-0b7b6c1faf89",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "7f96e565-b6ae-4221-f36b-0b7b6c1faf89"
},
"outputs": [
{
@@ -5925,10 +5577,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "avvjksEqxe_0",
- "outputId": "83aebc05-9f09-4c1c-9fd0-5bbd61dd4b35",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "83aebc05-9f09-4c1c-9fd0-5bbd61dd4b35"
},
"outputs": [
{
@@ -5990,10 +5639,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "7yI34yymyycT",
- "outputId": "3aa93020-e2bb-49c5-c566-b54f0621021e",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "3aa93020-e2bb-49c5-c566-b54f0621021e"
},
"outputs": [
{
@@ -6033,10 +5679,7 @@
"height": 665
},
"id": "au11pLUEPCaj",
- "outputId": "14f659d4-5a42-44a5-8234-b0ff00554a2c",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "14f659d4-5a42-44a5-8234-b0ff00554a2c"
},
"outputs": [
{
@@ -6333,10 +5976,7 @@
"height": 417
},
"id": "tDUOsuKJ6IQH",
- "outputId": "8117b505-1d7b-49dc-9291-a76f92e00e6e",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "8117b505-1d7b-49dc-9291-a76f92e00e6e"
},
"outputs": [
{
@@ -6530,10 +6170,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "ysddyYy717HJ",
- "outputId": "2a3ad761-8f27-4c5b-b20d-d8169328e3dc",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "2a3ad761-8f27-4c5b-b20d-d8169328e3dc"
},
"outputs": [
{
@@ -6688,10 +6325,7 @@
"height": 414
},
"id": "-qKFXysU9Y1j",
- "outputId": "7d70562c-90ac-4e71-a020-14ab673bd077",
- "vscode": {
- "languageId": "python"
- }
+ "outputId": "7d70562c-90ac-4e71-a020-14ab673bd077"
},
"outputs": [
{
@@ -6737,10 +6371,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "-1cIAS1Z6r_l",
- "vscode": {
- "languageId": "python"
- }
+ "id": "-1cIAS1Z6r_l"
},
"outputs": [],
"source": [
@@ -6764,10 +6395,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "_gwVNdLQHpQX",
- "vscode": {
- "languageId": "python"
- }
+ "id": "_gwVNdLQHpQX"
},
"outputs": [],
"source": [
@@ -6784,11 +6412,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "vscode": {
- "languageId": "python"
- }
- },
+ "metadata": {},
"outputs": [],
"source": [
"# Create sentencizer - Source: https://spacy.io/usage/linguistic-features#sbd \n",
@@ -6817,10 +6441,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "A_Hi0alJI4Xu",
- "vscode": {
- "languageId": "python"
- }
+ "id": "A_Hi0alJI4Xu"
},
"outputs": [],
"source": [
@@ -6851,10 +6472,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "rm0MYaAnBkbp",
- "vscode": {
- "languageId": "python"
- }
+ "id": "rm0MYaAnBkbp"
},
"outputs": [],
"source": [
@@ -6869,10 +6487,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "8Wzbv3w6B3OU",
- "vscode": {
- "languageId": "python"
- }
+ "id": "8Wzbv3w6B3OU"
},
"outputs": [],
"source": [
@@ -6896,10 +6511,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "HOOPoG3cCA0F",
- "vscode": {
- "languageId": "python"
- }
+ "id": "HOOPoG3cCA0F"
},
"outputs": [],
"source": [
@@ -6921,10 +6533,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "0b7siZa1CQG7",
- "vscode": {
- "languageId": "python"
- }
+ "id": "0b7siZa1CQG7"
},
"outputs": [],
"source": [
@@ -6941,10 +6550,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "8nxqfCBfCqWe",
- "vscode": {
- "languageId": "python"
- }
+ "id": "8nxqfCBfCqWe"
},
"outputs": [],
"source": [
@@ -6966,10 +6572,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "LduhApa3C1mD",
- "vscode": {
- "languageId": "python"
- }
+ "id": "LduhApa3C1mD"
},
"outputs": [],
"source": [
@@ -6982,10 +6585,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "id": "BhhDPZSHDCJD",
- "vscode": {
- "languageId": "python"
- }
+ "id": "BhhDPZSHDCJD"
},
"outputs": [],
"source": [
@@ -7067,7 +6667,17 @@
},
"kernelspec": {
"display_name": "Python 3",
+ "language": "python",
"name": "python3"
+ },
+ "language_info": {
+ "name": "python",
+ "version": "3.10.0"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "1c513e6c7cb82cbcc6920a5ad5b02bc5f0812c20ddf18b6fe3fefee2aa23c21d"
+ }
}
},
"nbformat": 4,