1
1
using PrecompileTools
2
2
3
3
@setup_workload begin
4
- N = 200 # number of data points
5
-
6
4
# define simple linear model with added noise
7
- x = randn (N)
8
- v = x + randn (N)* 0.25
9
- w = x + randn (N)* 0.25
10
- z = v + w + randn (N)* 0.25
11
- s = z + randn (N)* 0.25
12
-
13
- df = (x= x, v= v, w= w, z= z, s= s)
14
- @compile_workload begin
15
- ges (df; penalty= 1.0 , parallel= false )
16
- pcalg (df, 0.01 , gausscitest; stable= false )
5
+ df___ = let N = 200 # number of data points
6
+ x = randn (N)
7
+ v = x + randn (N)* 0.25
8
+ w = x + randn (N)* 0.25
9
+ z = v + w + randn (N)* 0.25
10
+ s = z + randn (N)* 0.25
11
+ (x= x, v= v, w= w, z= z, s= s)
12
+ end
13
+ @compile_workload begin
14
+ ges (df___; penalty= 1.0 , parallel= false )
15
+ pcalg (df___, 0.01 , gausscitest; stable= false )
17
16
end
18
17
19
- dag = digraph ([1 => 3 , 3 => 6 , 2 => 5 , 5 => 8 , 6 => 7 , 7 => 8 , 1 => 4 , 2 => 4 , 4 => 6 , 4 => 8 ])
18
+ dag__ = digraph ([1 => 3 , 3 => 6 , 2 => 5 , 5 => 8 , 6 => 7 , 7 => 8 , 1 => 4 , 2 => 4 , 4 => 6 , 4 => 8 ])
20
19
21
20
@compile_workload begin
22
- dsep (dag , 6 , 8 , 1 )
23
- collect (list_covariate_adjustment (dag , 6 , 8 , Int[], setdiff (Set (1 : 8 ), [1 , 2 ])))
21
+ dsep (dag__ , 6 , 8 , 1 )
22
+ collect (list_covariate_adjustment (dag__ , 6 , 8 , Int[], setdiff (Set (1 : 8 ), [1 , 2 ])))
24
23
end
25
24
end
0 commit comments