Skip to content

Commit 720d325

Browse files
committed
Fix typos and clarify text
Signed-off-by: Marcello Seri <[email protected]>
1 parent 8fbcbce commit 720d325

File tree

2 files changed

+9
-9
lines changed

2 files changed

+9
-9
lines changed

1-manifolds.tex

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -243,12 +243,12 @@ \section{Differentiable manifolds}
243243

244244
With these at hand, let's jump into the definition of smooth manifolds.
245245

246-
\begin{definition}\label{def:cratlas}\idxdef{Atlas}
246+
\begin{definition}\label{def:cratlas}\idxdef{Atlas}\idxdef{Open cover}
247247
A \emph{smooth atlas} is a collection
248248
\begin{equation}
249249
\cA = \{\varphi_\alpha: U_\alpha \to V_\alpha \;\mid\; \alpha\in A\}
250250
\end{equation}
251-
of pairwise compatible charts that cover\footnote{I.e. such that $M = \cup_{\alpha\in A} U_\alpha$. One calls the set $\{U_\alpha \;\mid\; \alpha\in A\}$, covering $M$ with open sets, an \emph{open cover} of $M$. Here $A$ is some index set, not necessarily countable.} $M$.
251+
of pairwise compatible charts that cover\footnote{I.e. such that $M = \cup_{\alpha\in A} U_\alpha$. One calls the set $\{U_\alpha \;\mid\; \alpha\in A\}$, covering $M$ with open sets, an \emph{open cover} of $M$. Here $A$ is some \emph{index set}, not necessarily countable.} $M$.
252252

253253
Two smooth atlases are \emph{equivalent} if their union is also a smooth atlas. That is if any two charts in the atlases are compatible.
254254
\end{definition}
@@ -270,7 +270,7 @@ \section{Differentiable manifolds}
270270
\marginnote[1em]{There are no preferred coordinate charts on a manifold: all coordinate systems compatible with the differentiable structure are on equal footing.}
271271
\end{definition}
272272

273-
\begin{notation}
273+
\begin{notation}\idxdef{Smooth chart}\idxdef{Smooth coordinate map}
274274
By a \emph{smooth chart $(U, \varphi)$} in a smooth manifold $M$ we mean a chart in the maximal atlas of the differentiable structure of $M$, in this case we call $\phi$ a \emph{smooth coordinate map} on $M$. We say that the chart is around $p$ or about $p$ if $p\in U$.
275275
\end{notation}
276276

@@ -310,7 +310,7 @@ \section{Differentiable manifolds}
310310
\end{exercise}
311311

312312
\vspace{1em}
313-
\begin{notation}\label{ntn:coords}
313+
\begin{notation}\label{ntn:coords}\idxdef{Local coordinates}\idxdef{Coordinate functions}\idxdef{Standard coordinates $r^i$}
314314
We will stick to the notation of~\cite{book:tu}.
315315
In the context of manifolds, denote $r^i: \R^n\to\R$, $1\leq i\leq n$, the standard coordinates on $\R^n$.
316316
With this notation, if $e_i$ denotes the $i$th standard basis vector\footnote{Identified with the \emph{point} $(0,\ldots,0,\LaTeXunderbrace{1}_{i\mbox{th component}},0,\ldots,0) \in\R^n$.} in $\R^n$, then $r^i(e_j) = \delta^i_j$.
@@ -495,7 +495,7 @@ \section{Quotient manifolds}\label{sec:quotient}
495495
\newthought{Let's first show that $\RP^n$ is a topological $n$-manifold}.
496496
The structure of topological manifold follows directly from the Theorem~\ref{thm:openproj} and $\pi$ being open, so let's prove that.
497497

498-
\begin{exercise}
498+
\begin{exercise}\label{exe:RPnmanifold}
499499
Assume that $\pi$ is an open map. Show that $\RP^n$ is a Hausdorff and second-countable topological manifold of dimension $n$.
500500
\end{exercise}
501501

@@ -504,7 +504,7 @@ \section{Quotient manifolds}\label{sec:quotient}
504504
\begin{equation}
505505
\pi^{-1}(\pi(U)) = \bigcup_{t\neq 0} tU = \bigcup_{t\neq 0}\{tp \mid p\in U\}.
506506
\end{equation}
507-
Since multiplication by $t\neq 0$ is a homeomorphism of $\R_0^{n+1}$, the set $t U$ is open for any $t$, as is their union, thus $\RP^n$ is both Hausdorff and second-countable.
507+
Since multiplication by $t\neq 0$ is a homeomorphism of $\R_0^{n+1}$, the set $t U$ is open for any $t$, as is their union, thus it follows from Exercise~\ref{exe:RPnmanifold} that $\RP^n$ is both Hausdorff and second-countable.
508508

509509
For each $i=0,\ldots,n$, define $\widetilde U_i := \{x\in\R^{n+1}_0 \mid x^i\neq0\}$, the set where the $i$-th coordinate is not $0$, and let $U_i = \pi(\widetilde U_i)\subset \RP^n$.
510510
Since $\widetilde U_i$ is open, $U_i$ is open.
@@ -515,7 +515,7 @@ \section{Quotient manifolds}\label{sec:quotient}
515515
\end{align}
516516
e.g. $\varphi_0([x^0, \ldots, x^n]) = (x^1/x_0, \ldots, x^n/x_0)$.
517517
This map is well--defined because its value is unchanged by multiplying $x$ by a non-zero constant.
518-
Moreover, $\varphi_i$ is continuous and invertible, the inverses can be computed explicitly\footnote{Check that the composition $\varphi_i \circ \varphi_i^{-1} = \id$. What happens if you define $\widetilde\varphi^{-1}_i(y^1, \ldots, y^n) := \left[y^1, \ldots, y^{i-1}, 42, y^{i+1}, \ldots, y^n\right]$, what would the corresponding $\widetilde\varphi_i$ be?} as
518+
Moreover, $\varphi_i$ is continuous and invertible, the inverses can be computed explicitly\footnote{Check that the composition $\varphi_i \circ \varphi_i^{-1} = \id$. What happens if you define $\widetilde\varphi^{-1}_i(y^1, \ldots, y^n) := \left[y^1, \ldots, y^{i}, 42, y^{i+1}, \ldots, y^n\right]$, what would the corresponding $\widetilde\varphi_i$ be?} as
519519
\begin{equation}
520520
\varphi_i^{-1}(y^1,\ldots,y^n) = \left[y^1, \ldots, y^{i}, 1, y^{i+1}, \ldots, y^n\right].
521521
\end{equation}
@@ -688,7 +688,7 @@ \section{Smooth maps and differentiability}\label{sec:smoothfn}
688688
The following corollary is just a restatement of Proposition~\ref{prop:smoothlocal}, but provides a useful perspective on the construction of smooth maps.
689689

690690
\begin{proposition}[Gluing lemma for smooth maps]\idxthm{Gluing lemma for smooth maps}
691-
Let $M$ and $N$ be two smooth manifolds and let $\{U_\alpha\mid\alpha\in A\}$ be an open cover of $M$.
691+
Let $M$ and $N$ be two smooth manifolds and let $\{U_\alpha\mid\alpha\in A\}$ be an open cover of $M$ with some index set $A$.
692692
Suppose that for each $\alpha\in A$ we are given a smooth map $F_
693693
\alpha:U_\alpha\to N$ such that the maps agree on the overlaps: $F_\alpha|_{U_\alpha\cap U_\beta} = F_\beta|_{U_\alpha\cap U_\beta}$ for all $\alpha,\beta\in A$.
694694
Then there exists a unique smooth map $F:M\to N$ such that $F|_{U_\alpha} = F_\alpha$ for each $\alpha\in A$.

aom.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -287,7 +287,7 @@ \chapter*{Introduction}
287287

288288
I am extremely grateful to Martijn Kluitenberg for his careful reading of the notes and his invaluable suggestions, comments and corrections, and to Bram Brongers\footnote{You can also have a look at \href{https://fse.studenttheses.ub.rug.nl/25344/}{his bachelor thesis} to learn more about some interesting advanced topics in differential geometry.} for his comments, corrections and the appendices that he contributed to these notes.\medskip
289289

290-
Many thanks also to the following people for their comments and for reporting a number of misprints and corrections: Jamara Admiraal, Wojtek Anyszka, Bhavya Bhikha, Huub Bouwkamp, Anna de Bruijn, Daniel Cortlid, Harry Crane, Fionn Donogue, Jordan van Ekelenburg, Brian Elsinga, Hanneke van Harten, Martin Daan van IJcken, Mollie Jagoe Brown, Remko de Jong, Aron Karakai, Hanna Karwowska, Wietze Koops, Henrieke Krijgsheld, Justin Lin, Valeriy Malikov, Mar\'ia Diaz Marrero, Aiva Misieviciute, Levi Moes, Nicol\'as Moro, Alexandru Oprea, Magnus Petz, Jorian Pruim, Luuk de Ridder, Lisanne Sibma, Marit van Straaten, Bo Tielman, Dave Verweg, Ashwin Vishwakarma, Lars Wieringa, Federico Zadra, Tijmen van der Ree, and Jesse van der Zeijden.
290+
Many thanks also to the following people for their comments and for reporting a number of misprints and corrections: Jamara Admiraal, Wojtek Anyszka, Bhavya Bhikha, Huub Bouwkamp, Anna de Bruijn, Daniel Cortlid, Harry Crane, Fionn Donogue, Jordan van Ekelenburg, Brian Elsinga, Hanneke van Harten, Martin Daan van IJcken, Mollie Jagoe Brown, Remko de Jong, Aron Karakai, Hanna Karwowska, Wietze Koops, Henrieke Krijgsheld, Justin Lin, Valeriy Malikov, Mar\'ia Diaz Marrero, Aiva Misieviciute, Levi Moes, Nicol\'as Moro, Alexandru Oprea, Magnus Petz, Jorian Pruim, Luuk de Ridder, Lisanne Sibma, Marit van Straaten, Bo Tielman, Dave Verweg, Ashwin Vishwakarma, Lisa Werkman, Lars Wieringa, Federico Zadra, Tijmen van der Ree, and Jesse van der Zeijden.
291291

292292
\mainmatter
293293

0 commit comments

Comments
 (0)