|
1 |
| -/* adler32.c -- compute the Adler-32 checksum of a data stream |
2 |
| - * Copyright (C) 1995-2004 Mark Adler |
3 |
| - * For conditions of distribution and use, see copyright notice in zlib.h |
4 |
| - */ |
5 |
| - |
6 |
| -/* @(#) $Id: adler32.c 6140 2006-07-30 15:34:04Z IJs $ */ |
7 |
| - |
8 |
| -#define ZLIB_INTERNAL |
9 |
| -#include "zlib.h" |
10 |
| - |
11 |
| -#define BASE 65521UL /* largest prime smaller than 65536 */ |
12 |
| -#define NMAX 5552 |
13 |
| -/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
14 |
| - |
15 |
| -#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
16 |
| -#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
17 |
| -#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
18 |
| -#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
19 |
| -#define DO16(buf) DO8(buf,0); DO8(buf,8); |
20 |
| - |
21 |
| -/* use NO_DIVIDE if your processor does not do division in hardware */ |
22 |
| -#ifdef NO_DIVIDE |
23 |
| -# define MOD(a) \ |
24 |
| - do { \ |
25 |
| - if (a >= (BASE << 16)) a -= (BASE << 16); \ |
26 |
| - if (a >= (BASE << 15)) a -= (BASE << 15); \ |
27 |
| - if (a >= (BASE << 14)) a -= (BASE << 14); \ |
28 |
| - if (a >= (BASE << 13)) a -= (BASE << 13); \ |
29 |
| - if (a >= (BASE << 12)) a -= (BASE << 12); \ |
30 |
| - if (a >= (BASE << 11)) a -= (BASE << 11); \ |
31 |
| - if (a >= (BASE << 10)) a -= (BASE << 10); \ |
32 |
| - if (a >= (BASE << 9)) a -= (BASE << 9); \ |
33 |
| - if (a >= (BASE << 8)) a -= (BASE << 8); \ |
34 |
| - if (a >= (BASE << 7)) a -= (BASE << 7); \ |
35 |
| - if (a >= (BASE << 6)) a -= (BASE << 6); \ |
36 |
| - if (a >= (BASE << 5)) a -= (BASE << 5); \ |
37 |
| - if (a >= (BASE << 4)) a -= (BASE << 4); \ |
38 |
| - if (a >= (BASE << 3)) a -= (BASE << 3); \ |
39 |
| - if (a >= (BASE << 2)) a -= (BASE << 2); \ |
40 |
| - if (a >= (BASE << 1)) a -= (BASE << 1); \ |
41 |
| - if (a >= BASE) a -= BASE; \ |
42 |
| - } while (0) |
43 |
| -# define MOD4(a) \ |
44 |
| - do { \ |
45 |
| - if (a >= (BASE << 4)) a -= (BASE << 4); \ |
46 |
| - if (a >= (BASE << 3)) a -= (BASE << 3); \ |
47 |
| - if (a >= (BASE << 2)) a -= (BASE << 2); \ |
48 |
| - if (a >= (BASE << 1)) a -= (BASE << 1); \ |
49 |
| - if (a >= BASE) a -= BASE; \ |
50 |
| - } while (0) |
51 |
| -#else |
52 |
| -# define MOD(a) a %= BASE |
53 |
| -# define MOD4(a) a %= BASE |
54 |
| -#endif |
55 |
| - |
56 |
| -/* ========================================================================= */ |
57 |
| -uLong ZEXPORT adler32(adler, buf, len) |
58 |
| - uLong adler; |
59 |
| - const Bytef *buf; |
60 |
| - uInt len; |
61 |
| -{ |
62 |
| - unsigned long sum2; |
63 |
| - unsigned n; |
64 |
| - |
65 |
| - /* split Adler-32 into component sums */ |
66 |
| - sum2 = (adler >> 16) & 0xffff; |
67 |
| - adler &= 0xffff; |
68 |
| - |
69 |
| - /* in case user likes doing a byte at a time, keep it fast */ |
70 |
| - if (len == 1) { |
71 |
| - adler += buf[0]; |
72 |
| - if (adler >= BASE) |
73 |
| - adler -= BASE; |
74 |
| - sum2 += adler; |
75 |
| - if (sum2 >= BASE) |
76 |
| - sum2 -= BASE; |
77 |
| - return adler | (sum2 << 16); |
78 |
| - } |
79 |
| - |
80 |
| - /* initial Adler-32 value (deferred check for len == 1 speed) */ |
81 |
| - if (buf == Z_NULL) |
82 |
| - return 1L; |
83 |
| - |
84 |
| - /* in case short lengths are provided, keep it somewhat fast */ |
85 |
| - if (len < 16) { |
86 |
| - while (len--) { |
87 |
| - adler += *buf++; |
88 |
| - sum2 += adler; |
89 |
| - } |
90 |
| - if (adler >= BASE) |
91 |
| - adler -= BASE; |
92 |
| - MOD4(sum2); /* only added so many BASE's */ |
93 |
| - return adler | (sum2 << 16); |
94 |
| - } |
95 |
| - |
96 |
| - /* do length NMAX blocks -- requires just one modulo operation */ |
97 |
| - while (len >= NMAX) { |
98 |
| - len -= NMAX; |
99 |
| - n = NMAX / 16; /* NMAX is divisible by 16 */ |
100 |
| - do { |
101 |
| - DO16(buf); /* 16 sums unrolled */ |
102 |
| - buf += 16; |
103 |
| - } while (--n); |
104 |
| - MOD(adler); |
105 |
| - MOD(sum2); |
106 |
| - } |
107 |
| - |
108 |
| - /* do remaining bytes (less than NMAX, still just one modulo) */ |
109 |
| - if (len) { /* avoid modulos if none remaining */ |
110 |
| - while (len >= 16) { |
111 |
| - len -= 16; |
112 |
| - DO16(buf); |
113 |
| - buf += 16; |
114 |
| - } |
115 |
| - while (len--) { |
116 |
| - adler += *buf++; |
117 |
| - sum2 += adler; |
118 |
| - } |
119 |
| - MOD(adler); |
120 |
| - MOD(sum2); |
121 |
| - } |
122 |
| - |
123 |
| - /* return recombined sums */ |
124 |
| - return adler | (sum2 << 16); |
125 |
| -} |
126 |
| - |
127 |
| -/* ========================================================================= */ |
128 |
| -uLong ZEXPORT adler32_combine(adler1, adler2, len2) |
129 |
| - uLong adler1; |
130 |
| - uLong adler2; |
131 |
| - z_off_t len2; |
132 |
| -{ |
133 |
| - unsigned long sum1; |
134 |
| - unsigned long sum2; |
135 |
| - unsigned rem; |
136 |
| - |
137 |
| - /* the derivation of this formula is left as an exercise for the reader */ |
138 |
| - rem = (unsigned)(len2 % BASE); |
139 |
| - sum1 = adler1 & 0xffff; |
140 |
| - sum2 = rem * sum1; |
141 |
| - MOD(sum2); |
142 |
| - sum1 += (adler2 & 0xffff) + BASE - 1; |
143 |
| - sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
144 |
| - if (sum1 > BASE) sum1 -= BASE; |
145 |
| - if (sum1 > BASE) sum1 -= BASE; |
146 |
| - if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); |
147 |
| - if (sum2 > BASE) sum2 -= BASE; |
148 |
| - return sum1 | (sum2 << 16); |
149 |
| -} |
| 1 | +/* adler32.c -- compute the Adler-32 checksum of a data stream |
| 2 | + * Copyright (C) 1995-2011 Mark Adler |
| 3 | + * For conditions of distribution and use, see copyright notice in zlib.h |
| 4 | + */ |
| 5 | + |
| 6 | +/* @(#) $Id$ */ |
| 7 | + |
| 8 | +#include "zutil.h" |
| 9 | + |
| 10 | +#define local static |
| 11 | + |
| 12 | +local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); |
| 13 | + |
| 14 | +#define BASE 65521 /* largest prime smaller than 65536 */ |
| 15 | +#define NMAX 5552 |
| 16 | +/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
| 17 | + |
| 18 | +#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
| 19 | +#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
| 20 | +#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
| 21 | +#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
| 22 | +#define DO16(buf) DO8(buf,0); DO8(buf,8); |
| 23 | + |
| 24 | +/* use NO_DIVIDE if your processor does not do division in hardware -- |
| 25 | + try it both ways to see which is faster */ |
| 26 | +#ifdef NO_DIVIDE |
| 27 | +/* note that this assumes BASE is 65521, where 65536 % 65521 == 15 |
| 28 | + (thank you to John Reiser for pointing this out) */ |
| 29 | +# define CHOP(a) \ |
| 30 | + do { \ |
| 31 | + unsigned long tmp = a >> 16; \ |
| 32 | + a &= 0xffffUL; \ |
| 33 | + a += (tmp << 4) - tmp; \ |
| 34 | + } while (0) |
| 35 | +# define MOD28(a) \ |
| 36 | + do { \ |
| 37 | + CHOP(a); \ |
| 38 | + if (a >= BASE) a -= BASE; \ |
| 39 | + } while (0) |
| 40 | +# define MOD(a) \ |
| 41 | + do { \ |
| 42 | + CHOP(a); \ |
| 43 | + MOD28(a); \ |
| 44 | + } while (0) |
| 45 | +# define MOD63(a) \ |
| 46 | + do { /* this assumes a is not negative */ \ |
| 47 | + z_off64_t tmp = a >> 32; \ |
| 48 | + a &= 0xffffffffL; \ |
| 49 | + a += (tmp << 8) - (tmp << 5) + tmp; \ |
| 50 | + tmp = a >> 16; \ |
| 51 | + a &= 0xffffL; \ |
| 52 | + a += (tmp << 4) - tmp; \ |
| 53 | + tmp = a >> 16; \ |
| 54 | + a &= 0xffffL; \ |
| 55 | + a += (tmp << 4) - tmp; \ |
| 56 | + if (a >= BASE) a -= BASE; \ |
| 57 | + } while (0) |
| 58 | +#else |
| 59 | +# define MOD(a) a %= BASE |
| 60 | +# define MOD28(a) a %= BASE |
| 61 | +# define MOD63(a) a %= BASE |
| 62 | +#endif |
| 63 | + |
| 64 | +/* ========================================================================= */ |
| 65 | +uLong ZEXPORT adler32(adler, buf, len) |
| 66 | + uLong adler; |
| 67 | + const Bytef *buf; |
| 68 | + uInt len; |
| 69 | +{ |
| 70 | + unsigned long sum2; |
| 71 | + unsigned n; |
| 72 | + |
| 73 | + /* split Adler-32 into component sums */ |
| 74 | + sum2 = (adler >> 16) & 0xffff; |
| 75 | + adler &= 0xffff; |
| 76 | + |
| 77 | + /* in case user likes doing a byte at a time, keep it fast */ |
| 78 | + if (len == 1) { |
| 79 | + adler += buf[0]; |
| 80 | + if (adler >= BASE) |
| 81 | + adler -= BASE; |
| 82 | + sum2 += adler; |
| 83 | + if (sum2 >= BASE) |
| 84 | + sum2 -= BASE; |
| 85 | + return adler | (sum2 << 16); |
| 86 | + } |
| 87 | + |
| 88 | + /* initial Adler-32 value (deferred check for len == 1 speed) */ |
| 89 | + if (buf == Z_NULL) |
| 90 | + return 1L; |
| 91 | + |
| 92 | + /* in case short lengths are provided, keep it somewhat fast */ |
| 93 | + if (len < 16) { |
| 94 | + while (len--) { |
| 95 | + adler += *buf++; |
| 96 | + sum2 += adler; |
| 97 | + } |
| 98 | + if (adler >= BASE) |
| 99 | + adler -= BASE; |
| 100 | + MOD28(sum2); /* only added so many BASE's */ |
| 101 | + return adler | (sum2 << 16); |
| 102 | + } |
| 103 | + |
| 104 | + /* do length NMAX blocks -- requires just one modulo operation */ |
| 105 | + while (len >= NMAX) { |
| 106 | + len -= NMAX; |
| 107 | + n = NMAX / 16; /* NMAX is divisible by 16 */ |
| 108 | + do { |
| 109 | + DO16(buf); /* 16 sums unrolled */ |
| 110 | + buf += 16; |
| 111 | + } while (--n); |
| 112 | + MOD(adler); |
| 113 | + MOD(sum2); |
| 114 | + } |
| 115 | + |
| 116 | + /* do remaining bytes (less than NMAX, still just one modulo) */ |
| 117 | + if (len) { /* avoid modulos if none remaining */ |
| 118 | + while (len >= 16) { |
| 119 | + len -= 16; |
| 120 | + DO16(buf); |
| 121 | + buf += 16; |
| 122 | + } |
| 123 | + while (len--) { |
| 124 | + adler += *buf++; |
| 125 | + sum2 += adler; |
| 126 | + } |
| 127 | + MOD(adler); |
| 128 | + MOD(sum2); |
| 129 | + } |
| 130 | + |
| 131 | + /* return recombined sums */ |
| 132 | + return adler | (sum2 << 16); |
| 133 | +} |
| 134 | + |
| 135 | +/* ========================================================================= */ |
| 136 | +local uLong adler32_combine_(adler1, adler2, len2) |
| 137 | + uLong adler1; |
| 138 | + uLong adler2; |
| 139 | + z_off64_t len2; |
| 140 | +{ |
| 141 | + unsigned long sum1; |
| 142 | + unsigned long sum2; |
| 143 | + unsigned rem; |
| 144 | + |
| 145 | + /* for negative len, return invalid adler32 as a clue for debugging */ |
| 146 | + if (len2 < 0) |
| 147 | + return 0xffffffffUL; |
| 148 | + |
| 149 | + /* the derivation of this formula is left as an exercise for the reader */ |
| 150 | + MOD63(len2); /* assumes len2 >= 0 */ |
| 151 | + rem = (unsigned)len2; |
| 152 | + sum1 = adler1 & 0xffff; |
| 153 | + sum2 = rem * sum1; |
| 154 | + MOD(sum2); |
| 155 | + sum1 += (adler2 & 0xffff) + BASE - 1; |
| 156 | + sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
| 157 | + if (sum1 >= BASE) sum1 -= BASE; |
| 158 | + if (sum1 >= BASE) sum1 -= BASE; |
| 159 | + if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); |
| 160 | + if (sum2 >= BASE) sum2 -= BASE; |
| 161 | + return sum1 | (sum2 << 16); |
| 162 | +} |
| 163 | + |
| 164 | +/* ========================================================================= */ |
| 165 | +uLong ZEXPORT adler32_combine(adler1, adler2, len2) |
| 166 | + uLong adler1; |
| 167 | + uLong adler2; |
| 168 | + z_off_t len2; |
| 169 | +{ |
| 170 | + return adler32_combine_(adler1, adler2, len2); |
| 171 | +} |
| 172 | + |
| 173 | +uLong ZEXPORT adler32_combine64(adler1, adler2, len2) |
| 174 | + uLong adler1; |
| 175 | + uLong adler2; |
| 176 | + z_off64_t len2; |
| 177 | +{ |
| 178 | + return adler32_combine_(adler1, adler2, len2); |
| 179 | +} |
0 commit comments